首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lozovaya V  Ulanov A  Lygin A  Duncan D  Widholm J 《Planta》2006,224(6):1385-1399
Metabolic profiling using GC–MS and LC–MS analyses of soluble metabolites and cell wall bound phenolic compounds from maize calluses of different morphogenic competence revealed a number of biochemical characteristics that distinguish tissues with high plant regeneration ability from tissues that cannot efficiently regenerate plants in vitro. Maize cultures of different ages from H99 (compact type I callus) and HiII (friable type II callus) were divided into two different samples: regenerable (R) and non-regenerable (NR) based on known morphologies. Tissues from both genotypes with high morphogenic potential had higher asparagine and aspartate and indole-3-butenol concentrations, decreased sugar and DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) concentrations, low levels of 4-aminobutyric acid (GABA) and chlorogenic acid and lower levels of feruloyl- and sinapoyl glucosides compared to NR tissues. The ether bound cell wall phenolics of tissues with high regeneration potential had higher levels of the predominant G (guaiacyl) units and lower levels of H (p-hydroxyphenyl) and S (syringyl) units and higher ferulic acid/coumaric acid and ferulic acid/diferulic acid ratios. The same trends were found with the ester-bound phenolics of HiII, however, there were only small differences between the H99 R and NR tissues. Concentrations of the major sugars, organic acids, amino acids and soluble aromatic compounds tended to increase as the time after culture initiation increased. The results show that there are differences in general metabolism, phenolic secondary compounds and cell wall composition between R and NR cell types.  相似文献   

2.
The antioxidant properties of dietary phenolics are believed to be reduced in vivo because of their affinity for proteins. In this study we assessed the bioavailability of phenolics and the in vivo plasma antioxidant capacity after the consumption of blueberries (Vaccinium corymbosum L.) with and without milk. In a crossover design, 11 healthy human volunteers consumed either (a) 200 g of blueberries plus 200 ml of water or (b) 200 g of blueberries plus 200 ml of whole milk. Venous samples were collected at baseline and at 1, 2, and 5 h postconsumption. Ingestion of blueberries increased plasma levels of reducing and chain-breaking potential (+ 6.1%, p < 0.001; + 11.1%, p < 0.05) and enhanced plasma concentrations of caffeic and ferulic acid. When blueberries and milk were ingested there was no increase in plasma antioxidant capacity. There was a reduction in the peak plasma concentrations of caffeic and ferulic acid (? 49.7%, p < 0.001, and ? 19.8%, p < 0.05, respectively) as well as the overall absorption (AUC) of caffeic acid (p < 0.001). The ingestion of blueberries in association with milk, thus, impairs the in vivo antioxidant properties of blueberries and reduces the absorption of caffeic acid.  相似文献   

3.
A turbine blade reactor (TBR) was employed to cultivate rice calli immobilized in polyurethane foam as a support. In the bioreactor, rice callus could be immobilized quickly in a 3 mm cube of the support, and then attached to the stainless mesh cylinder set at the center of the bioreactor. For improving the immobilization ratio of rice callus in the bioreactor, the optimum support volume and bioreactor operation and modification were investigated. The support volume had a pronounced effect on the immobilization ratio of rice callus, and the maximum volume was found to be 60 ml. By repeating a periodic operation three times (agitating at 300 rpm for 5 min and then 50 rpm for 2 min, and then 200 rpm of constant agitation speed during the remaining time), rice calli were uniformly entrapped in almost all supports and the immobilization ratio was improved as compared with that using a constant bioreactor operation at 200 rpm. When the inoculum concentration of rice callus was increased, the callus concentration after 7-day culture increased, but the immobilization ratio decreased. To improve the immobilization efficiency further at high cell concentration, the TBR was modified by setting an air sparger inside the stainless mesh cylinder. In the modified TBR, floating of the support by attached air bubbles was avoided, and the immobilization ratio increased further and reached 86.3% when we increased the support volume to 90 ml under the periodic bioreactor operation on a daily basis. The regeneration frequency of immobilized callus was increased by periodic operation and modification of the bioreactor.  相似文献   

4.
The cell walls in the elongating zone of submerged floating rice internodes show high susceptibility to expansins. When internode sections corresponding to such an elongation zone were incubated for 24 h under osmotic stress conditions produced by treatment with 100 mM polyethylene glycol 4000 (PEG), the cell wall susceptibility to expansins remained at its initial level, while the susceptibility of internode sections incubated under unstressed conditions decreased considerably during the same period. The contents of polysaccharides and phenolic acids as ferulic, diferulic and p-coumaric acids in the cell walls of internode sections increased substantially under unstressed conditions, but the increases were almost completely prevented by osmotic stress. Ferulic acid applied to internode sections under osmotic stress reduced the susceptibility of the cell walls to expansins and increased the levels of ferulic and diferulic acids in the cell walls, with little effect on the accumulation of polysaccharides. In contrast, applied p-coumaric acid increased the level of p-coumaric acid in the cell walls without a change in the levels of ferulic and diferulic acids but did not reduce the susceptibility to expansins. These results suggest that the deposition of ferulic and diferulic acids is a primary determinant in regulating the reduction of the susceptibility of cell walls to expansins in floating rice internodes.  相似文献   

5.
Type II maize callus of the HiII genotype can be separated into regenerable and non-regenerable types based on the visible morphology of the callus. When the non-regenerable morphotype of callus initiated 6 mo or a yr earlier was treated with from 2% to 20% polyethylene glycol (PEG; 3,350 molecular weight) for three subculture periods of 21 d each, the morphotype changed to regenerable, and the callus did become highly regenerable. The PEG treatments did not improve the plant regeneration ability of the regenerable morphotype or of an old culture initiated 4 yr earlier.  相似文献   

6.
Hydrolysis of corn cob performed for 6 h with 0.5 N NaOH at solid/liquid ratio of 0.084 g/g allowed obtaining a hydrolyzate containing 1171 ± 34 mg/l ferulic acid and 2156 ± 63 mg/l p-coumaric acid that was used as a medium for vanillin bioproduction by the engineered strain Escherichia coli JM109/pBB1. Aiming at maximizing vanillin bioproduction, the effects of medium heat sterilization, one-stage or two-stage pre-cultivation, adaptation of the microorganism to the hydrolyzate and inoculum biomass level were investigated. Biomass pre-cultivated once in unsterilized hydrolyzate was able to effectively convert ferulic and p-coumaric acids to a mixture of vanillin, vanillic acid and vanillyl alcohol provided with the typical vanilla flavor. At initial biomass concentration of 0.5 gDM/l, maximum values of vanillin concentration (239 ± 15 mg/l), vanillin yield on consumed ferulic acid (0.66 ± 0.03 mol/mol) and vanillin volumetric productivity (10.9 ± 0.7 mg/lh) were obtained after 22 h.  相似文献   

7.
The percentage of germination of wild oat was significantly inhibited by increasing the concentrations of phenolic compounds. Ferulic acid was the most effective compound which completely inhibited germination at a concentration of 3.0 mM. At the same time, wheat and barley were slightly affected with different concentrations of the four phenolic compounds. The percentage of germination of wheat significantly decreased with increasing of ferulic acid reaching a maximum inhibition at 3.0 mM concentration. On the other hand, the germination of wheat was not affected with the other three phenolic compounds. The percentage of germination of barley was not affected with all phenolic compounds except for hydroxy phenolic acetic acid which has significant effect at a concentration of 3.0 mM. Salicylic acid significantly inhibited the growth parameters gradually in wild oat, wheat and barley. The shoot/root ratio was decreased in wild oat and barley, while the ratio increased in wheat. The growth parameters were completely inhibited at 3.0 mM of ferulic acid for both wild oat and wheat but slightly inhibited for barley. The shoot/root ratio was increased in all concentrations of ferulic acid except at 3.0 mM which was completely inhibited for both wild oat and wheat, while the ratio was increased in all treatments of ferulic acid in the case of barley. The growth parameters were highly significant and decreased in wild oat, wheat and barley with increasing the concentrations of hydroxybenzoic acid and hydroxyphenyl acetic acid. The shoot/root ratio was not changed in all concentrations except at 3.0 mM in the case of wild oat, the ratio was decreased at 2.0 and 3.0 mM in the case of wheat, while the ratio increased in most of hydroxybenzoic acid concentrations in the case of barley. The shoot/root ratio was increased with increasing of the hydroxyphenyl acetic acid concentrations.  相似文献   

8.
《Phytochemistry letters》2008,1(4):195-198
To determine whether caffeine biosynthesis is controlled by the availability of purine precursors and/or methyl-donors, we examined the effect of some purine compounds on purine alkaloid accumulation, using tea callus cultures. No stimulation of caffeine biosynthesis was observed when the calli were cultured with 0.5 mM adenosine, guanosine or hypoxanthine for 3 weeks. However, 0.5 mM paraxanthine doubled the caffeine level relative to controls. Adenosine stimulated the growth of callus and reduced the caffeine concentration 3 months after inoculation. These results indicate that methylation of xanthosine by 7-methylxanthosine synthase is the most plausible rate-limiting step of caffeine biosynthesis; the supply of non-methylated purine precursors or availability of S-adenosyl-l-methionine are not the principal controlling factors of caffeine biosynthesis. Adenosine salvage to adenine nucleotide synthesis may contribute to the growth of tea calli, but not to caffeine biosynthesis.  相似文献   

9.
Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.  相似文献   

10.
A continuous culture system, inoculated with rumen liquor from goats or sheep, was used to study fermentation characteristics of olive leaves (OL). The effects of adding polyethylene glycol (PEG 4000 MW; 0, 2 or 20 g/100 g OL) and/or supplementing with urea (U) or sunflower meal (SM) (1.0 g N/100 g OM) were also studied. Olive leaf fermentation promoted low VFA production (35.2 mmol/d), predominantly of acetic acid, and low efficiency of VFA production (4.91 mol/kg digestible carbohydrates, DCHO). Both values increased with N supplementation, but effects of PEG were variable. No differences ascribed to the rumen inoculum origin were observed. The ammonia N concentration was increased only by supplementation with U. Total and amino acid N output was low and increased with N addition, but it was not affected by PEG treatment. No differences ascribed to the inoculum origin were observed concerning microbial N production rate or efficiency (g N/kg DCHO). There was no clear difference between sources of supplementary N regarding bacterial protein synthesis. On the basis of PEG results, the effect of tannins on OL fermentation was not important.  相似文献   

11.
Successful application of genetic transformation for integration of a transgene is much dependent upon availability of an efficient in vitro plant regeneration procedure and detection of transgene insertion and expression. Isolated immature embryos (IEs) of Eragrostis tef cultivar DZ-01-196 were used for embryogenic callus formation and the callus was transformed with GA inactivating gene PcGA2ox under the control of a triple CaMV 35S promoter using Agrobacterium transformation procedure. Embryogenic callus was induced from immature embryos in a medium containing KBP minerals in the presence of 2,4-dichlorophenoxiyacetic acid. The embryogenic calli were further inoculated with Agrobacterium and the calli were grown in co-cultivation medium (CCM) followed by selection in KBP and regeneration (K4NB) media. Putatively transformed E. tef embryogenic calli were tolerant to treatment with the selectable marker kanamycin, while 75 mg l 1 geneticin inhibited growth of non-transformed shoots derived from matured embryos completely after 12 days. A total of 55 plants were regenerated from all the embryogenic calli to fully viable plants setting seeds at maturity. Eight putatively transformed T0 plants were produced carrying the transgene in their genome which was detected by PCR. Sequence analysis confirmed amplified PCR products to have 97.2 and 99.8% sequence identity to PcGA2ox and nptII, respectively. However, detection of the transgene, PcGA2ox or nptII, in T1 plants was inconsistent although phenotypic analysis of T1 plants showed changes in pheno-morphic and agronomic characters such as plant height, number of internodes, tillering, panicle length, biomass, yield as well as GA content. Culm reduction was due to absence of elongation of the upper-most internodes. Panicle length in semi-dwarfed plants showed no relation with culm length. GA analysis showed plants with semi-dwarf phenotype to be associated with a low level of bioactive GA1 and its immediate precursors. Up to 3.7 fold increase in grain yield per plant was found in some semi-dwarfed plants.  相似文献   

12.
Feruloyl esterases (Faes) are a subclass of the carboxylic esterases that hydrolyze the ester bonds between ferulic acid and polysaccharides in plant cell walls. Until now, the biochemical characteristics of FAEs from Bacillus spp. have not been reported. In this study, a strain with high activity of FAEs, Bacillus amyloliquefaciens H47 was screened from 122 Bacillus – type strains. Finally, three FAEs (BaFae04, BaFae06, and BaFae09) were identified. Comparing with other bacterial FAEs, these novel FAEs exhibited low sequence identities (less than 30%). The profiles of 52 esterase substrates showed that the three FAEs had a broad substrate spectrum and could effectively hydrolyze several common FAE substrates, such as methyl ferulate, ethyl caffeate, methyl p-coumarate, methyl sinapate, and chlorogenic acid. Furthermore, the three FAEs also can release ferulic acid from destarched wheat bran. They showed maximal activity with an optimal pH of 8.0 at 30 °C, 35 °C, and 40 °C, respectively. BaFae04 showed high stability in the temperature range of 25–60 °C for 1 h and retained 59% of its activity at 60 °C. The present study displays some useful characteristics of FAEs for potential industrial application and contributes to our understanding of FAEs.  相似文献   

13.
Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O2 to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O2 levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography–tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 ± 7.4% with gallic acid to 93 ± 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R2 = 0.95, p < 0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation.  相似文献   

14.
The objective of the present experiment was to determine the implications of prenatal undernutrition on the behaviour of juvenile lambs. Dams of one group (C) were fed 100% of the recommended requirements throughout pregnancy, while those of two other groups were fed 50% of the control nutrient allowance during the first 30 days of pregnancy (R1) or 50% of the control nutrient allowance from days 31–100 of pregnancy (R2). Between 2 and 5 months old, behaviour of lambs was tested by the implementation of 2 types of test: isolation and novelty. There were no statistical differences between lamb treatments in escape behaviour and heart rates during isolation test, or the latency to approach a novel or a familiar object in the novelty test in tests conducted at 2, 3, 4 and 5 months of age.Male lambs showed a tendency of turning to the right-hand side of the test pen, irrespective of treatment group, between the age of 2 and 5 months old. A greater proportion of C compared to R1 males turned right at the age of 2 and 5 months old (P < 0.05). Significant differences concerning laterality were found also between C and R1 female lambs at the age of 2 and 4 months old (P < 0.001), between C and R2 male lambs at the age of 2 months old (P < 0.05), between C and R2 female lambs at the age of 4 and 5 months old (P < 0.01), between R1 and R2 male lambs at the age of 2 and 5 months old (P < 0.05) and between R1 and R2 female lambs at the age of 2 months old (P < 0.001).It is concluded that prenatal undernutrition during different periods of pregnancy had no effect on fear-related behaviour, but effect on laterality at the early stages of lamb age between 2 and 5 months old.  相似文献   

15.
In this study, a protocol for initiation of callus and shoot cultures from leaves and shoot tips explants of different silybium genotypes collected from different locations in Egypt was established. Callus cultures were initiated from leaves explants and exposed to different concentrations of the precursor (coniferyl alcohol). Shoot cultures were initiated from shoot tips explants. Moreover, the produced plants of the different Silybium shoots as well as intact plants were subjected to protein screening using SDS–PAGE analysis.Results obtained revealed that the optimum medium for growth and maintenance of friable callus was MS medium supplemented with 0.25 mg L−1 2,4-Dichlorophenoxy acetic acid (2,4-D) + 0.25 mg L−1 Kinetin (Kin). The best medium for proliferation of high number of shoots was MS-medium with 0.25 mg L−1 each of Benzyl Adinine (BA) and Naphthalene Acetic Acid (NAA). Coniferyl alcohol in concentration of 30 μM caused an increase in accumulation of silymarin contents in most callus cultures. SDS–PAGE of different Silybium shoots revealed that the protein profiles of 100% of in vitro produced plantlets similar to their control.  相似文献   

16.
Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8 ± 0.01 and 33.20 ± 0.01 μg/cm2 of NR with retention of about 93.72 ± 0.50 and 84.81 ± 0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4 °C and thermal stability between 25–50 °C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure.  相似文献   

17.
A clonal mass propagation to obtain mountainous sources of Rheum coreanum Nakai, a rare medicinal plant in Democratic People’s Republic of Korea was established by rhizome tissue culture. Whole plants were selected and collected as a vigorous individual free from blights and harmful insects among wild plants of R. coreanum grown on the top of Mt. Langrim (1.540 m above the sea) situated at the northern extremity of Democratic People’s Republic of Korea. Induction of the callus was determined using four organs separated from the whole plant and different plant growth regulators. The callus was successfully induced from rhizome explant on MS medium containing 2.4-D (0.2–0.3 mg/l). In the MS medium supplemented with a combination of BAP (2 mg/l) and NAA (0.2 mg/l), single NAA (0.5 mg/l), or IBA (0.5 mg/l), a higher number of shoot, root and plantlets was achieved. The survival rate on the mountainous region of the plantlets successfully acclimatized (100%) in greenhouse reached 95%, and yields of crude drug and contents of active principles were higher than those obtained by sexual and vegetative propagation. This first report of R. coreanum tissue culture provides an opportunity to control extinction threats and an efficient callus proliferation system for growing resources rapidly on a large scale.  相似文献   

18.
This study aims to evaluate the therapeutic effect of polyethylene glycosylated porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in lipopolysaccharide (LPS)-challenged piglets. Eighteen 21-day-old weaning piglets were randomly assigned into three groups: control (saline solution), LPS (100 μg/kg LPS), and PEG–pGLP-2 (10 nmol/kg PEG–pGLP-2 + 100 μg/kg LPS). All treatments were administered intraperitoneally. Compared with the control treatment, LPS treatment significantly decreased (P < 0.05) the villus heights of the duodenum and jejunum, as well as the villus height/crypt depth ratio of the jejunum. However, PEG–pGLP-2 therapy reduced these effects (P > 0.05). Specifically, PEG–pGLP-2 infusion significantly increased the villus height/crypt depth ratio of the duodenum (P < 0.05) compared with LPS treatment. Compared with the control treatment, LPS treatment significantly increased (P < 0.05) the mRNA expression levels of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the jejunum. However, PEG–pGLP-2 therapy reduced these effects (P < 0.05). Specifically, PEG–pGLP-2 infusion significantly decreased (P < 0.05) the mRNA expression levels of interleukin (IL)-8 and TNF-α in the duodenum and jejunum, IL-10 in the duodenum, and IFN-γ in the jejunum compared with the LPS treatment. LPS treatment increased the caspase-3 activity of the ileum mucosal (P < 0.05), and this effect was significantly reduced by PEG–pGLP-2 treatment. These results indicate that PEG–pGLP-2 infusion alleviates the severity of intestinal injury in weaning piglets by reducing the secretion of inflammatory cytokines and the caspase-3 activity, and increasing the villus height/crypt depth ratio.  相似文献   

19.
Olive mill wastewater (OMW) is an effluent of the olive oil extraction process. The large volumes involved, along with the high phenolic content and chemical oxygen demand, cause major environmental problems. The presence of phenolics limits the effectiveness of aerobic or anaerobic treatment of this wastewater. In most of the studies performed on OMW, the concentration of phenolics is reduced by diluting the OMW prior to biological treatment, which leads to an increase in waste volume. Therefore, the aim of this work was to investigate the possibility of reducing the phenolic content without dilution and without any addition of nutrients or pretreatment by using the white-rot fungi Trametes versicolor FPRL 28A INI. Through an adaptation process, the fungus was able to remove 78% of total phenolics in shake flask experiments and 39% in static culture using undiluted OMW medium. In continuously stirred tank reactor (CSTR) conditions, 70% of total phenolics removal was achieved. Analysis with GC–MS showed that all simple phenolics disappeared from the medium after the 8th day of cultivation at an 0.25 vvm aeration rate. The maximum activities of phenol degrading enzymes laccase and manganese peroxidase (MnP) obtained under these conditions were 762.14 ± 42.11 and 97.80 ± 8.11 U l?1 respectively.  相似文献   

20.
Ferulic acid esterases (FAE) were produced by Aspergillus terreus CECT 2808 from vine trimming shoots (VTS) and corn cob. Later, the fungal extracts thus obtained were used to enzymatically release ferulic acid (FA) from both substrates. Our findings showed a higher FAE activity in the enzymatic extracts produced on corn cob (0.070 ± 0.004 U/mL). Nevertheless, the enzymatic extracts produced on VTS demonstrated a better performance for FA release from both corn cob (2.05 ± 0.01 mg/g) and VTS (0.19 ± 0.003 mg/g). This result was probably because of the higher xylanase/FAE ratio determined in VTS extract. Therefore, an additional assay was carried out by supplementing corn cob extract with a commercial xylanase to test the influence of FAE/xylanase ratio in FA release. The results revealed the relevance of the FAE/xylanase ratio for an optimal FA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号