首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in the anatomical structures, sap translocation and metabolic profiles in Jatropha curcas L. (Euphorbiaceae), infected with Jatropha mosaic virus (JMV) have been investigated using MRI and HR-MAS NMR spectroscopy. The contrast of MRI images distinguishes abnormalities in anatomical structures of infected and healthy stem. The HR-MAS NMR spectroscopic analysis indicated that viral infection significantly affected the plant metabolism. Higher accumulation of TCA cycle intermediates, such as citrate and malate, in JMV-infected plants suggested a higher rate of respiration. The respiration rate was more than twofold as compared to healthy ones. The viral stress also significantly increases the concentrations of alanine, arginine, glutamine, valine, GABA and choline as compared to healthy ones. Microscopic examination revealed severe hyperplasia caused by JMV with a considerable reduction in the size of stem cells. Lower concentration of glucose and sucrose in viral-infected stem tissues indicates decreased translocation of photosynthates from leaves to stem due to hyperplasia caused by JMV. The MR images distinguished stele, cortical and pith regions of JMV-infected and healthy stems. Contrast of T1- and T2-weighted images showed significant differences in the spatial distribution of water, lipids and macromolecules in virus-infected and healthy stem tissues. The results demonstrated the value of MRI and HR-MAS NMR spectroscopy in studying viral infection and metabolic shift in plants. The present methodology may help in better understanding the metabolic alterations during biotic stress in other plant species of agricultural and commercial importance.  相似文献   

2.
Analyses of cocoa swollen shoot virus-infected and healthy cocoa (Theobroma cacao L.) plant tissues were made to determine the effect of virus infection on the metabolism and transport of carbohydrates in affected plants. Starch, sucrose and reducing sugars were found to accumulate in infected tissues. Translocation of photosynthates (mainly as sucrose) to the stem and root system, as estimated by the overnight loss of carbohydrates from the leaves and by 14CO2 tracer experiments, was as efficient in the infected plants as in the healthy. Infected plants showed a higher diurnal turnover of carbohydrates in their leaves and, on unit leaf area basis, higher levels of 14C-labelled assimilates suggesting that they have a greater photosynthetic capacity than the healthy plants. The rate of respiration, as determined by the proportions of organic acids, amino acids and other intermediary metabolites formed from translocated 14C-labelled sugars, was generally higher in infected than in healthy plants. It is concluded from available data showing the presence in infected tissues of mineral nutrients, protein N and amino acids at the same concentrations as in healthy plants, and from the relatively high rates of photosynthesis and respiration that a high rate of metabolic activity is maintained in the host-virus system. Some factors possibly contributing to the stunted growth of infected plants are discussed in the light of these findings.  相似文献   

3.
Lupeol-3-(3′R-hydroxy)-stearate, also known as procrim b (1), was isolated from the methanolic stem extract of Pentalinon andrieuxii and initially mistaken as lupeol acetate when analyzed by GC–MS only. The correct structure of 1 was established following a careful analysis of its NMR and MS data.  相似文献   

4.
In current study the pharmaceutically active herbs was used against coccidiosis, caused by a protozoan: Eimeria, lead to $ 3 billion loss annually. The aqueous and methanolic extracts of whole plants were applied in-vitro to assess sporulation inhibition (spi) assay and calculated the inhibitory concentration (IC50). For in-vivo study 9 groups of 14 day old broiler chicks were infected with Eimeria tenella and three groups were treated different concentrations of methanolic extracts of Verbena officinalis and Polygonum glabrum post infection. The mean weight gain, oocyst count, diarrhea, biochemical tests, hematology, and histopathology of all groups were analyzed. The herbs were characterized by antioxidant assay, phytochemical screening, Fourier transmission and infrared (FT-IR), Ultra Violet-visible (UV–Vis) spectroscopy and Gas chromatography and mass spectroscopy (GC–MS). The GC–MS identified phyto-compounds of V. officinalis were docked with S-Adenosyl methionine (SAM) synthetase. The in-vitro study revealed that V. officinalis and P. glabrum have minimum IC50 of 0.14 and 12 mg/ml respectively. The in-vivo experiment showed that V. officinalis had significantly high anticoccidial potential with significant hematological profile like drug treated controls. The histology of treated chicks also showed recovery in the studied tissues. The antioxidant assay showed that V. officinalis have 4.19U/mg Superoxide dismutase (SOD) and 33.96 µM/mg Glutathione (GSH) quantities. The chemical characterization confirmed the presence of large number of organic compounds, however Flavonoids found only in V. officinalis, which suggests the anticoccidial potential of V. officinalis because flavonoids as antagonist of thiamine (Prinzo, 1999), because it promotes the carbohydrate synthesis required. Strychane, 1-acetyl-20a-hydroxy-16-methylene has best binding of with target protein with lowest binding score (-6.4 Kcal/mol), suggests its anticoccidial potential in poultry.  相似文献   

5.
The effects of micropropagation conditions on avocado (Persea americana Mill.) have been measured in leaves and plants cultured in vitro. The consequences of the type and concentration of sugar in the medium and of carbon dioxide concentration in the atmosphere on the rates of photosynthesis and amounts of ribulose 1,5-biphosphate carboxylase-oxygenase (EC 4.1.1.39; Rubisco) and total soluble protein (TSP) were measured. At the highest sucrose supply (87.6 mM), Rubisco content was substantially decreased in leaves, and even more when elevated CO2 (1 000 μmol·mol−1) was supplied. Maximum photosynthetic rate (Pmax) was significantly decreased when plants developed in high sucrose and elevated CO2. However, Rubisco concentration was significantly greater when glucose was supplied at the same molar concentration or when the concentration of sucrose was small (14.6 mM), and no differences were observed due to the CO2 concentration in the air in these treatments. The ratio of Rubisco to total soluble protein (Rubisco/TSP) was dramatically decreased in plants grown in the highest concentration of sucrose and with elevated CO2. Leaf area and ratio of leaf fresh weight/(stem + root) fresh weight, were greater in plants grown with CO2 enriched air. However, upon transplanting, survival was poorer in plants grown on low sucrose/high CO2 compared to those grown on high sucrose/high CO2.  相似文献   

6.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

7.
Magnetic resonance imaging (MRI) has considerably improved the diagnosis and monitoring of multiple sclerosis (MS). Conventional MRI such as T2-weighted and gadolinium-enhanced T1-weighted sequences detect focal lesions of the white matter, damage of the blood–brain barrier, and tissue loss and inflammatory activity within lesions. However, these conventional MRI metrics lack the specificity required for characterizing the underlying pathophysiology, especially diffuse damage occurring throughout the whole central nervous system. To overcome these limitations, advanced MRI techniques have been developed to get more sensitive and specific parameters of focal and diffuse brain damage. Among these techniques, magnetization transfer imaging, diffusion MRI, functional MRI, and magnetic resonance spectroscopy are the most significant. In this article, we provide an overview of these advanced MRI techniques and their contribution to the better characterization and understanding of MS.  相似文献   

8.
Many plants accumulate large quantities of specialized metabolites in secretory glandular trichomes (SGTs), which are specialized epidermal cells. In the genus Solanum, SGTs store a diverse collection of glucose and sucrose esters. Profiling of extracts from two accessions (LA1777 and LA1392) of Solanum habrochaites using ultra-high performance liquid chromatography–mass spectrometry (UHPLC/MS) revealed wide acylsugar diversity, with up to 11 isomers annotated for each individual elemental formula. These isomers arise from differences in ester chain lengths and their positions of substitution or branching. Since fragment ion masses were not sufficient to distinguish all isomers, 24 acylsucroses were purified from S. habrochaites accessions and cultivated tomato (Solanum lycopersicum M82) and characterized using NMR spectroscopy. Two-dimensional NMR spectra yielded assignments of positions of substitution of specific acyl groups, and locations of branching. The range of substitution was wider than reported earlier, and in contrast to previous reports, tetra- and penta-acylsucroses were substituted at position 2 with acyl groups other than acetate. Because UHPLC/MS fails to yield sufficient information about structure diversity, and quantitative NMR of acylsugar mixtures is confounded by structural redundancy, the strategic combination of NMR and UHPLC/MS provides a powerful approach for profiling a class of metabolites with great structural diversity across genotypes.  相似文献   

9.
Translocation of Photosynthate in Curly Top Virus-infected Tomatoes   总被引:1,自引:0,他引:1       下载免费PDF全文
Photosynthate translocation in single leaflets of healthy and curly top virus-infected tomatoes was investigated using 14C as a marker. The amount of radioactivity found in plant parts not exposed to 14CO2 was substantially lower in diseased than in healthy plants. The time lag for the appearance of 14C in the petiole was considerably longer in the infected plants than in the healthy. The kinetics of disappearance of 14C from the lamina during the 24-hour period following labeling showed a strong retention of recent assimilates within the diseased leaf, not accompanied by increased immobilization into insoluble forms. Sucrose was the predominant compound participating in photosynthate transport in both healthy and diseased leaves. The amount of 14CO2 fixed was approximately 40% lower in curly top virus-infected leaves than in healthy leaves.  相似文献   

10.
Background and AimsThe ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations.MethodsVulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy.Key ResultsThe data show significant differences in stem P50, varying 2-fold from −1.58 MPa in the Cape Verde Island accession to −3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance.ConclusionsThe woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.  相似文献   

11.
Low sink demand provided by pod removal and stem girdling of beans (Vicia faba, cv. Daqingshan) (-Sink) induced a significantly lower net photosynthetic rate (P n), stomatal conductance (g s), internal CO2 concentration (C i), and transpiration rate (E) compared with pod and root sink retention (CK). This depression in P n was due to stomatal limitation. Low sink demand of -Sink plants resulted in a higher leaf sucrose content, but a lower sucrose content in guard cells. Moreover, the significant accumulation of H2O2 and ABA were observed in both leaves and guard cells of -Sink plants. The most intensive electron dense deposit of cerium perhydroxides, produced by H2O2 reaction with cerium chloride, was present in the cell walls, especially the dorsal walls of guard cells. Immunogold electron-microscopy localization of ABA showed that ABA was distributed in ventral walls of guard cells and the intercellular space of mesophyll cells of -Sink leaves in contrast to CK plants. Application of exogenous sucrose to isolated bean leaves increased H2O2 and ABA contents. H2O2 and ABA in leaves was likely generated by two independently regulated pathways, each affected by the high sucrose concentration induced by low sink demand. Increased sucrose in leaves in response to low sink demand may have caused the increase of H2O2 and ABA, and their accumulation in mesophyll cells and guard cells was likely the primary cause for stomatal closure under low sink demand.  相似文献   

12.
13.
Cestric acid, a new phenolic ester was isolated from leaves of Cestrum euanthes. By means of GC, HPLC, mass spectroscopy, GC/MS, and 13C NMR, it was shown to be an ester of caffeic acid with glucaric acid. The ester occurs as an equilibrium mixture of four isomers.  相似文献   

14.

Key message

Specific VOC emissions from infected plants allow their recognition and elicit defence responses in neighboring plants, which are, however, insufficient to induce resistance.

Abstract

A wide range of volatile organic compounds (VOCs) is released during plant–pathogen interactions both by the pathogens and the hosts. Some of these VOCs are specific for the different diseases and are known to play a role in the pathogenicity or in plant defence responses. Besides, disease-specific VOCs may serve as markers for diagnostic protocols, which allow a non-destructive and rapid screening of bulk samples of plant material. This work aimed to verify the feasibility of a VOC-based diagnosis and to investigate the possible biological role of VOCs released during the plant–pathogen interactions. The volatile emissions from Pseudomonas syringae pv. actinidiae in axenic cultures and from inoculated in vitro kiwifruit plants were characterized by gas chromatography–mass spectrometry (GC–MS) and proton transfer reaction–time-of-flight-mass spectrometry (PTR–ToF-MS). By GC–MS, several putative biochemical markers, such as 1-undecene, were identified. PTR–ToF-MS resulted highly effective in screening the plant material for latent infections. To develop a more user-friendly, portable and less expensive diagnosis system, two different electronic nose models were tested for the early diagnosis of P. syringae pv. actinidiae in asymptomatic plant material. Our experiments demonstrated the feasibility of the electronic nose-based screening of infected plant material. Concerning the biological role of the VOCs released during the plant–pathogen interactions, the exposure of healthy plants to VOCs from infected ones influences the plant growth and induces the stimulation of protective responses. However, after the infection, P. syringae pv. actinidiae is able to selectively inactivate the induced plant defences.
  相似文献   

15.
Errata     
The avian erythroblastosis virus (AEV) and the avian myelocytomatosis virus 29 (MCV) induce the rapid appearance of tumors in birds. Although basically similar in nucleotide sequence, the genomes of MCV and AEV each contain a unique putative oncogene (oncMCV and oncAEV); each virus transforms at least two cell types in vivo and in vitro, suggesting that multiple functional domains may exist within oncAEV and oncMCV.Virus-coded polyproteins were previously detected in cells infected by MCV and AEV by the use of antibodies directed against virion proteins of the closely related avian sarcoma virus. However, AEV and MCV may encode as yet undetected proteins that do not react with antibodies directed against avian sarcoma virus proteins. mRNA was examined from MCV- and AEV-infected cells as a means of determining whether such additional proteins might exist.Our results indicate that MCV-infected cells contain only one RNA with sequences corresponding to oncMCV; this 5.4 kb RNA corresponds in size to the MCV genome and probably encodes P110, the previously identified MCV polyprotein. The absence of any other MCV-specific mRNAs suggests that P110 (or presently unidentified derivatives) may be solely responsible for transformation by MCV.In contrast to our results with MCV, we found that AEV-infected fibroblasts and erythroblasts contain two species of RNA that anneal with cDNA corresponding to the majority of oncAEV. For several strains of AEV, the two intracellular viral RNAs have sizes of 5.3 and 3.5 kb, but in one instance have sizes 6.1 and 4.3 kb. We analyzed the distribution of oncAEV-specific sequences within the two AEV RNAs by hybridization with cDNAs corresponding to different sections of oncAEV. As expected, cDNAs from all regions of oncAEV anneal with the larger AEV RNA; this RNA probably encodes the AEV polyprotein. By contrast, hybridization results for the subgenomic RNA indicate that it contains the 3′ half of oncAEV and a leader sequence splied from the 5′ end of the viral genome.Our analyses of mRNA expression for two multipotential oncogenic retroviruses thus yield contrasting results. The existence of two intracellular AEV RNAs suggests that oncAEV may encode two distinct proteins. MCV, however, apparently encodes only a single viral protein. A third defective leukemia virus, the avian myeloblastosis virus (AMV), generates a subgenomic 2.3 kb mRNA. We conclude that each of these three defective avian retroviruses employs a distint scheme for expression of its oncogenicity.  相似文献   

16.
α-Bisabolol is a commercially important aroma chemical currently obtained from the Candeia tree (Vanillosmopsis erythropappa). Continuous unsustainable harvesting of the Candeia tree has prompted the urgent need to identify alternative crops as a source of this commercially important sesquiterpene alcohol. A chemotaxonomic assessment of two Salvia species indigenous to South Africa is presented and recommended as a potential source of α-bisabolol. The essential oil obtained by hydrodistillation of the aerial parts was analysed by gas chromatography coupled to mass spectrometry (GC–MS) and mid-infrared spectroscopy (MIRS). Orthogonal projections to latent structures–discriminant analysis (OPLS–DA) were used for multivariate classification of the oils based on GC–MS and MIRS data. Partial least squares (PLS) calibration models were developed on the MIRS data for the quantification of α-bisabolol using GC–MS as the reference method. A clear distinction between Salvia stenophylla and Salvia runcinata oils was observed using OPLS–DA on both GC–MS and MIRS data. The MIR calibration model showed high coefficient of determination (R2 = 0.999) and low error of prediction (RMSEP = 0.540%) for α-bisabolol content.  相似文献   

17.
A new flavanol glycoside, symplocoside, was isolated from the MeOH extract of the stem bark of Symplocos uniflora and its constitution and conformation were elucidated by means of MS, 1H and 13C NMR spectroscopy as (2R:3R)-7-O-β-D-glucopyranosyl-3′-O-methyl-(–)-epicatechin.  相似文献   

18.
The essential oil of Schinus terebinthifolius fruits was reinvestigated using GC and GC–MS techniques. Apart from several known compounds three sesquiterpene hydrocarbons with a carbon skeleton exhibiting the rare spiro(cyclopropane) moiety could be isolated by a combination of column chromatography and GLC. Structure assignments were carried out by NMR spectroscopy. These natural products are 9-spiro(cyclopropa)-4,4,8-trimethyl-2-methylenbicyclo[4.3.0]non-1(6)-ene (terebanene), 9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]nona-1,5-diene (teredenene), and (6R1,8R1)-9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]non-1-ene (terebinthene).  相似文献   

19.
The essential oils of 732 individual plants of Thymus praecox Opiz subsp. arcticus (E. Durand) Jalas (syn. T. drucei Ronn.) collected in Scotland, Ireland, and in the south of England have been analysed by gas chromatography (GC) and mass spectrometry (GC–MS) in order to elucidate the chemical character of this subspecies on the British Isles. In total, 69 components were identified, most of them monoterpenoids and sesquiterpenoids with hedycaryol, linalyl acetate, linalool, the germacradienols, trans-nerolidol, T-cadinol, and β-caryophyllene being the most important compounds. The analysis of the quantitative essential oil data by means of neural networks revealed that T. praecox subsp. arcticus growing in Britain is highly polymorphous. There were 17 chemotypes with the hedycaryol chemotype as the most frequent (24% of the plants), followed by the linalool/linalyl acetate chemotype (22% of the plants) and germacra-1(10),4-dien-6-ol chemotype (18% of the plants). It seems that each part of the British Isles has its special chemotype pattern with 13 chemotypes in Scotland, 11 in Ireland, and 17 in the south of England. An overview of the North Atlantic region of Europe revealed that the polymorphism of T. praecox subsp. arcticus in the essential oil is more distinctive in the southern than in the northern regions, with only 2, 5, and 1 chemotypes in Greenland, Iceland, and Norway, respectively.  相似文献   

20.
In the human body, the catecholamine norepinephrine is mainly metabolized to 3,4-dihydroxyphenylglycol (DHPG) which therefore serves as an important biomarker for norepinephrine's metabolism. Most data on DHPG concentrations in human plasma and urine has been generated by using HPLC-ECD or GC–MS technologies. Here, we describe a stable-isotope dilution GC–MS/MS method for the quantitative determination of DHPG in human urine using trideutero-DHPG (d3-DHPG) as internal standard and a two-step derivatization process with pentafluorobenzyl bromide (PFB-Br) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). Two pentafluorobenzyl (PFB) trimethylsilyl (TMS) derivatives were obtained and identified, i.e., two isomeric DHPG-PFB-(TMS)3 derivatives and the later eluting DHPG-tetrafluorobenzyl-(TMS)2 derivative, i.e., DHPG-TFB-(TMS)2. To our knowledge the DHPG-TFB-(TMS)2 derivative and the underlying reaction have not been reported previously. In this reaction both vicinal aromatic hydroxyl groups of DHPG react with PFB-Br to form a heterocyclic seven-membered [1,4]dioxepin compound. The DHPG-TFB-(TMS)2 derivative was used for quantitative GC–MS/MS analysis in the electron-capturing negative-ion chemical ionization mode by selected-reaction monitoring of m/z 351 from m/z 401 for DHPG and of m/z 352 from m/z 404 for d3-DHPG. Validation experiments on human urine samples spiked with DHPG in a narrow (0–33 nM) and a wide range (0–901 nM) revealed high recovery (86–104%) and low imprecision (RSD; 0.01–2.8%). LOD and relative LLOQ (rLLOQ) values of the method for DHPG were determined to be 76 amol and 9.4%, respectively. In urine of 28 patients suffering from chronic inflammatory rheumatic diseases, DHPG was measured at a mean concentration of 238 nM (38.3 μg/g creatinine). The DHPG concentration in the respective control group of 40 healthy subjects was measured to be 328 nM (39.2 μg/g creatinine). Given the unique derivatization reaction and collision-induced dissociation, and the straightforwardness the present method is highly specific, accurate, precise, and should be useful in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号