首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have reported that the N6-methyladenosine demethylase ALKBH5 can regulate adipogenesis in humans.However,its function in birds remains unclear....  相似文献   

2.
The mRNA modification N6-methyladenosine(m6A)plays vital roles in plant development and biotic and abiotic stress responses.The RNA m6A demethylase ALKBH9 B can remove m6A in alfalfa mosaic virus RNA and plays roles in alfalfa mosaic virus infection in Arabidopsis.However,it is unknown whether ALKBH9 B also exhibits demethylation activity and has a biological role in endogenous plant mRNA.We demonstrated here that mRNA m6A modification is in...  相似文献   

3.
《Developmental cell》2022,57(12):1466-1481.e6
  1. Download : Download high-res image (129KB)
  2. Download : Download full-size image
  相似文献   

4.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Faithful genome integrity maintenance plays an essential role in cell survival. Here, we identify the RNA demethylase ALKBH5 as a key regulator that protects cells from DNA damage and apoptosis during reactive oxygen species (ROS)-induced stress. We find that ROS significantly induces global mRNA N6-methyladenosine (m6A) levels by modulating ALKBH5 post-translational modifications (PTMs), leading to the rapid and efficient induction of thousands of genes involved in a variety of biological processes including DNA damage repair. Mechanistically, ROS promotes ALKBH5 SUMOylation through activating ERK/JNK signaling, leading to inhibition of ALKBH5 m6A demethylase activity by blocking substrate accessibility. Moreover, ERK/JNK/ALKBH5-PTMs/m6A axis is activated by ROS in hematopoietic stem/progenitor cells (HSPCs) in vivo in mice, suggesting a physiological role of this molecular pathway in the maintenance of genome stability in HSPCs. Together, our study uncovers a molecular mechanism involving ALKBH5 PTMs and increased mRNA m6A levels that protect genomic integrity of cells in response to ROS.  相似文献   

6.
7.
Zeng Y  Qu X  Li H  Huang S  Wang S  Xu Q  Lin R  Han Q  Li J  Zhao RC 《FEBS letters》2012,586(16):2375-2381
Elucidation of the molecular mechanisms governing human adipose-derived mesenchymal stem cells (hASCs) osteogenic differentiation is of great importance for improving the treatment of bone-related diseases. In this study, we examined the role of microRNA (miR)-100 on the osteogenesis of hASCs. Overexpression of miR-100 inhibited osteogenic differentiation of hASCs in vitro, whereas downregulation of miR-100 enhanced the process. Target prediction analysis and dual luciferase report assay confirmed that bone morphogenetic protein receptor type II (BMPR2) was a direct target of miR-100. Furthermore, knockdown of BMPR2 by RNA interference inhibited osteogenic differentiation of hASCs, similar as the effect of upregulation miR-100. Taken together, our findings imply that miR-100 plays a negative role in osteogenic differentiation and might act through targeting BMPR2.  相似文献   

8.
LIGHT is a cytokine belonging to the TNF family. This cytokine has been extensively defined in its role on T‐cell regulation and dendritic cell maturation. It also exhibits the role in liver regeneration. We recently identified its role in regulation of hematopoietic stem cell differentiation. However, the question whether this cytokine regulates mesenchymal stem cells (MSCs) proliferation and/or differentiation remains unknown. In this study, we observed that MSCs express LT‐βR but not HVEM. PCR analysis show LIGHT mRNA is undectable in MSCs. LIGHT did promote neither MSCs proliferation nor migration. However, LIGHT promoted MSCs differentiation into adipocyte which was confirmed by Oil Red O Staining Assay. Since either MSCs or adipocytes are the major cell population in bone marrow niche, we then suggest that LIGHT regulate bone marrow niche, such as MSCs differentiation. J. Cell. Biochem. 114: 346–353, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.

Introduction

Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro.

Methods

Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test.

Results

We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation.

Conclusion

We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.  相似文献   

12.
13.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

14.
15.
It is well-known that some species of lizard have an exceptional ability known as caudal autotomy (voluntary self-amputation of the tail) as an anti-predation mechanism. After amputation occurs, they can regenerate their new tails in a few days. The new tail section is generally shorter than the original one and is composed of cartilage rather than vertebrae bone. In addition, the skin of the regenerated tail distinctly differs from its original appearance. We performed a proteomics analysis for extracts derived from regenerating lizard tail tissues after amputation and found that endoplasmin (ENPL) was the main factor among proteins up-regulated in expression during regeneration. Thus, we performed further experiments to determine whether ENPL could induce chondrogenesis of tonsil-derived mesenchymal stem cells (T-MSCs). In this study, we found that chondrogenic differentiation was associated with an increase of ENPL expression by ER stress. We also found that ENPL was involved in chondrogenic differentiation of T-MSCs by suppressing extracellular signal-regulated kinase (ERK) phosphorylation.  相似文献   

16.
17.
Xu  Lingli  Wang  Chengze  Li  Yongzheng  Wang  Ying  Fu  Baiping  Yang  Guoli 《Functional & integrative genomics》2022,22(5):769-781
Functional & Integrative Genomics - The molecular mechanism of mechanical force regulating the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) has not been clearly...  相似文献   

18.
19.
Arsenic trioxide (ATO) as an anti-tumor drug could induce differentiation and apoptosis in tumor cells. Mesenchymal stem cells (MSCs) play important roles in the hematogenesis of bone marrow. Many reports have shown that the disorder of MSC adipogenic and osteogenic differentiation occurs in some diseases. However, reports about the effects of ATO on MSCs are limited. In this study, we found that 1 μM ATO promoted MSC senescence mainly through p21, although it had no effect on apoptosis at this dose. Furthermore, ATO promoted adipogenic differentiation, but inhibited osteogenic differentiation in MSCs. Our study also showed that CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor gamma PPARγ might be involved in the regulation of adipogenic and osteogenic differentiation induced by ATO. Our results indicated that ATO may exert an anti-tumor effect by influencing bone marrow micro-environment. Moreover, it may regulate the adipogenic and osteogenic differentiation of MSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号