首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rubber-degrading bacteria were screened for the production of clearing zones around their colonies on latex overlay agar plates. Novel three bacteria, Streptomyces sp. strain LCIC4, Actinoplanes sp. strain OR16, and Methylibium sp. strain NS21, were isolated. To the best of our knowledge, this is the first report on the isolation of a Gram-negative rubber-degrading bacterium other than γ-proteobacteria. Gel permeation chromatography analysis revealed that these strains degraded poly(cis-1,4-isoprene) to low-molecular-weight products. The occurrence of aldehyde groups in the degradation products by NS21 was suggested by staining with Schiff's reagent and 1H-nuclear magnetic resonance spectroscopy. The lcp gene of LCIC4, which showed 99% amino acid sequence identity with that of Streptomyces sp. strain K30, was cloned, and contained a putative twin-arginine motif at its N terminus. It is located next to oxiB, which is estimated to be responsible for oxidation of degradation intermediate of rubber in K30. Southern hybridization analysis using LCIC4 lcp probe revealed the presence of a lcp-homolog in OR16. These results suggest that the lcp-homologs are involved in rubber degradation in LCIC4 and OR16.  相似文献   

2.
Streptomyces sp. strain K30 was isolated from soil next to a city high way in Münster (Germany) according to its ability to degrade natural and synthetic poly(cis-1,4-isoprene) rubber and to form clear zones on natural rubber latex agar plates. The clear zone forming phenotype was used to clone the responsible gene by phenotypic complementation of a clear zone negative mutant. An open reading frame (lcp) of 1,191 bp was identified, which was preceded by a putative signal sequence and restored the capability to form clear zones on natural rubber latex in the mutant. The putative translation product exhibited strong homologies (50% aa identity) to a putative secreted protein from Streptomyces coelicolor strain A3(2), another clear zone forming strain. Heterologous expression of lcp of Streptomyces sp. strain K30 in Streptomyces lividans strain TK23 enabled the latter to form clear zones on latex-overlay agar plates and to accumulate a degradation product of about 12 kDa containing aldehyde groups. Two ORFs putatively encoding a heterodimeric molybdenum hydroxylase (oxiAB) were identified downstream of lcp in Streptomyces sp. strain K30 strain which exerted a positive effect on clear zone formation and enabled the strain to oxidize the resulting aldehydes. Heterologous expression of a fragment harboring lcp plus oxiAB in S. lividans TK23 resulted in accumulation of aldehydes only in the presence of 10 mM tungstate. Determination of protein content during cultivation on poly(cis-1,4-isoprene) revealed an increase of the cellular protein, and gel permeation chromatography analysis indicated a shift of the molecular weight distribution of the rubber to lower values in the transgenic S. lividans strains and in the wild type, thus confirming utilization and degradation of rubber. Therefore, for the first time, genes responsible for clear zone formation on natural rubber latex and synthetic cis-1,4-polyisoprene degradation in Gram-positive bacteria were identified and characterized.  相似文献   

3.
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6, 10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of beta-oxidation, (iii) oxidation of the conjugated double bond resulting in a beta-keto acid, and (iv) decarboxylation.  相似文献   

4.
5.
Enoki M  Doi Y  Iwata T 《Biomacromolecules》2003,4(2):314-320
Oxidative degradation of cis- and trans-1,4-polyisoprenes by two types of enzyme-mediator systems, lipoxygenase/linoleic acid and horseradish peroxidase/1-hydroxybenzotriazole, was investigated at 37 degrees C in aqueous media and analyzed by gel permeation chromatography. Lipoxygenase and horseradish peroxidase activate their substrates, linoleic acid and 1-hydroxybenzotriazole, respectively, for scission of main chains of both 1,4-polyisoprenes. Molecular weights of 1,4-polyisoprenes decreased during the treatment under both enzyme-mediator systems, and the depolymerization was completely inhibited by the addition of butylated hydroxytoluene. When the enzyme or the mediator from a reaction system was omitted, depolymerization did not progress, indicating that the scission of polymer chain is induced by the radicals generated only in the presence of both enzyme and mediator. Fenton reagent with linoleic acid was also effective against the degradation of both 1,4-polyisoprenes. Vulcanized natural rubber latex gloves were treated under these three methods, and surface degradation with hole formation was observed with a scanning electron micrograph.  相似文献   

6.
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation.  相似文献   

7.

The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874–2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via β-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.

  相似文献   

8.
An extracellular protein with strong absorption at 406 nm was purified from cell-free culture fluid of latex-grown Xanthomonas sp. strain 35Y. This protein was identical to the gene product of a recently characterized gene cloned from Xanthomonas sp., as revealed by determination of m/z values and sequencing of selected isolated peptides obtained after trypsin fingerprint analysis. The purified protein degraded both natural rubber latex and chemosynthetic poly(cis-1,4-isoprene) in vitro by oxidative cleavage of the double bonds of poly(cis-1,4-isoprene). 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (m/z 236) was identified and unequivocally characterized as the major cleavage product, and there was a homologous series of minor metabolites that differed from the major degradation product only in the number of repetitive isoprene units between terminal functions, CHO-CH2--and--H2-COCH3. An in vitro enzyme assay for oxidative rubber degradation was developed based on high-performance liquid chromatography analysis and spectroscopic detection of product carbonyl functions after derivatization with dinitrophenylhydrazone. Enzymatic cleavage of rubber by the purified protein was strictly dependent on the presence of oxygen; it did not require addition of any soluble cofactors or metal ions and was optimal around pH 7.0 at 40 degrees C. Carbon monoxide and cyanide inhibited the reaction; addition of catalase had no effect, and peroxidase activity could not be detected. The purified protein was specific for natural rubber latex and chemosynthetic poly(cis-1,4-isoprene). Analysis of the amino acid sequence deduced from the cloned gene (roxA [rubber oxygenase]) revealed the presence of two heme-binding motifs (CXXCH) for covalent attachment of heme to the protein. Spectroscopic analysis confirmed the presence of heme, and approximately 2 mol of heme per mol of RoxA was found.  相似文献   

9.
A bacterial community degrading branched alkylphenol ethoxylate (APE) was selected from coastal sea water intermittently polluted by urban sewage. This community degraded more than 99% of a standard surfactant, TRITON X 100, but I.R. analysis of the remaining compound showed the accumulation of APE2 (alkylphenol with a two units length ethoxylated chain) which seemed very recalcitrant to further biodegradation. Twenty-five strains were isolated from this community, essentially Gram negative and were related to Pseudomonas, Oceanospirillum or Deleya genera. Among these strains, only four were able to degrade APE9–10 (TRITON X 100). They were related to the Pseudomonas genus and were of marine origin. Pure cultures performed with these strains on TRITON X 100 gave APE5 and APE4 as end products. These products were further degraded to APE2 by two other strains unable to degrade the initial surfactant.  相似文献   

10.
AIMS: To isolate endophytic Streptomyces strains from tomato and examine their antimicrobial activity. METHODS: Endophytic Streptomyces strains were isolated using surface-sterilization methods and identified by morphological characteristics. Antimicrobial activities were measured by the agar plate sensitivity method. Antifungal activity in vivo was measured by seedling mortality in infested soils. RESULTS: Twenty-one per cent of endophytic streptomycete isolates produced antibacterial metabolites and 41% produced antifungal metabolites in S medium. Sixty-five per cent of the most frequently isolated strains inhibited the growth of Rhizoctonia solani by the antibiosis assay but only 32% produced metabolites active against R. solani in S medium. Growth promotion and enhanced disease resistance of seedlings inoculated with Streptomyces sp. strain S30 were observed in tomato but not in cucumber seedlings. CONCLUSIONS: Endophytic Streptomyces spp. strains were successfully isolated using stringent methods and strain S30 promoted growth and enhanced resistance to R. solani in tomato seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic streptomycetes showing antifungal activity in vitro and in vivo may indicate the potential for their use as biocontrol agents particularly of R. solani disease of tomato seedlings.  相似文献   

11.
Bacteria able to mineralize 100 to 200 ppm of pentachlorophenol (PCP) were isolated by selective enrichment from PCP-contaminated soils from three geographic areas of Minnesota. Although differing somewhat in their responses to various biochemical and biophysical tests, all strains were assigned to the genus Flavobacterium. Five representative strains were examined in detail. All strains metabolized PCP as a sole source of carbon and energy; 73 to 83% of all carbon in the form of [U-14C]PCP was returned as 14CO2, with full liberation of chlorine as chloride. A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others. Guanine-plus-cytosine contents of DNA ranged from 58.8 to 63.8%, and DNA/DNA hybridization studies with total DNA digests suggested substantial genetic homology between strains. All strains were shown to possess an 80- to 100-kilobase plasmid, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases).  相似文献   

12.
The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50 degrees C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.  相似文献   

13.
Melanoidins, complex biopolymer of amino-carbonyl compounds are the major coloring and polluting constituents of distillery wastewaters. In this study, three aerobic melanoidin-degrading bacteria (RNBS1, RNBS3 and RNBS4) were isolated from soil contaminated with distillery effluent and characterized as Bacillus licheniformis (RNBS1), Bacillus sp. (RNBS3) and Alcaligenes sp. (RNBS4) by biochemical tests and 16S rRNA gene sequence analysis. The degradation of synthetic and natural melanoidins was studied by using the axenic and mixed bacterial consortium. Results have revealed that the mixed consortium was more effective compared to axenic culture decolorizing 73.79 and 69.83% synthetic and natural melanoidins whereas axenic cultures RNBS1, RNBS3 and RNBS4 decolorized 65.88, 62.56 and 66.10% synthetic and 52.69, 48.92 and 59.64% natural melanoidins, respectively. The HPLC analysis of degraded samples has shown reduction in peak areas compared to controls, suggesting that decrease in color intensity might be largely attributed to the degradation of melanoidins by isolated bacteria.  相似文献   

14.
Oxidative cleavage of poly(cis-1,4-isoprene) by rubber oxygenase RoxA purified from Xanthomonas sp. was investigated in the presence of different combinations of (16)O(2), (18)O(2), H(2)(16)O, and H(2)(18)O. 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD; m/z 236) was the main cleavage product in the absence of (18)O-compounds. Incorporation of one (18)O atom in ODTD was found if the cleavage reaction was performed in the presence of (18)O(2) and H(2)(16)O. Incubation of poly(cis-1,4-isoprene) (with RoxA) or of isolated unlabeled ODTD (without RoxA) with H(2)(18)O in the presence of (16)O(2) indicated that the carbonyl oxygen atoms of ODTD significantly exchanged with oxygen atoms derived from water. The isotope exchange was avoided by simultaneous enzymatic reduction of both carbonyl functions of ODTD to the corresponding dialcohol (12-hydroxy-4,8-dimethyl-trideca-4,8-diene-1-ol (HDTD; m/z 240) during RoxA-mediated in vitro cleavage of poly(cis-1,4-isoprene). In the presence of (18)O(2), H(2)(16)O, and alcohol dehydrogenase/NADH, incorporation of two atoms of (18)O into the reduced metabolite HDTD was found (m/z 244), revealing that RoxA cleaves rubber by a dioxygenase mechanism. Based on the labeling results and the presence of two hemes in RoxA, a model of the enzymatic cleavage mechanism of poly(cis-1,4-isoprene) is proposed.  相似文献   

15.
This review intends to provide an overview of historical and recent achievements in studies of microbial degradation of natural and synthetic rubber. The main scientific focus is on the key enzymes latex-clearing protein (Lcp) from the Gram-positive Streptomyces sp. strain K30 and rubber oxygenase A (RoxA) from the Gram-negative Xanthomonas sp. strain 35Y, which has been hitherto the only known rubber-degrading bacterium that does not belong to the actinomycetes. We also emphasize the importance of knowledge of biodegradation in industrial and environmental biotechnology for waste natural rubber disposal.  相似文献   

16.
Bacteria able to mineralize 100 to 200 ppm of pentachlorophenol (PCP) were isolated by selective enrichment from PCP-contaminated soils from three geographic areas of Minnesota. Although differing somewhat in their responses to various biochemical and biophysical tests, all strains were assigned to the genus Flavobacterium. Five representative strains were examined in detail. All strains metabolized PCP as a sole source of carbon and energy; 73 to 83% of all carbon in the form of [U-14C]PCP was returned as 14CO2, with full liberation of chlorine as chloride. A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others. Guanine-plus-cytosine contents of DNA ranged from 58.8 to 63.8%, and DNA/DNA hybridization studies with total DNA digests suggested substantial genetic homology between strains. All strains were shown to possess an 80- to 100-kilobase plasmid, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases).  相似文献   

17.
Two bacterial strains, E1 and E2, isolated from gasoline-polluted soil completely degraded ethyl tert-butyl ether (ETBE), as the sole source of carbon and energy, at specific rates of about 80 mg g(-1) and 58 mg g(-1) of cell protein day(-1), respectively. On the basis of morphological and phenotypic characteristics, strain E1 was tentatively identified as Comamonas testosteroni and strain E2 as belonging to Centre for Disease Control group A-5. The inhibitory effect of metyrapone on the degradative ability of both strains was the first evidence indicating the involvement of a soluble cytochrome P-450 in the cleavage of the ETBE ether bond. This observation was confirmed by spectrophotometric analysis of reduced cell extracts that gave, in the presence of carbon monoxide, a major absorbance peak at about 450 nm. Both strains were also able to degrade, as the sole source of carbon and energy, ETBE's major metabolic intermediates (tert-butyl alcohol and tert-butyl formate) and other gasoline oxygenates (methyl tert-butyl ether and tert-amyl methyl ether). The degradation rates varied considerably, with both strains exhibiting a preferential activity for ETBE's metabolic intermediates.  相似文献   

18.
cis- and trans-2,3-Epoxybutane-1,4-diol 1,4-bisphosphate, which can be considered reactive analogs of several sugar bisphosphates, have been synthesized in a continuing effort to develop new and diverse affinity labeling reagents for enzymes which bind phosphorylated substrates. cis-2,3-Epoxybutane-1,4-diol was obtained by epoxidation of commercially available cis-2-butene-1,4-diol with m-chloroperbenzoic acid; the trans epoxide was obtained by reduction of 2-butyne-1,4-diol with LiAlH4 followed by epoxidation with m-chloroperbenzoic acid. The diols were phosphorylated with diphenyl chlorophosphate, and the phenyl blocking groups were then removed by Pt-catalyzed hydrogenation. By the criterion of their reaction with the sulfhydryl group of glutathione, the phosphorylated epoxides are 6000 times less electrophilic than the previously described and structurally similar reagent 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate.  相似文献   

19.
20.
Summary Starting with yeast cells lacking the constitutive alcohol dehydrogenase activity (ADHI), mutants with partially glucose-insensitive formation of ADHII were isolated. Genetic analysis showed that four mutants (designated ADR3 c) were linked to the ADHII-structural gene, ADR2, and were cis-dominant. On derepression, two of them produced elevated ADHII-levels, indicating a promotor function of the altered controlling site. The other ADR3 c-mutant alleles affected the ADHII-subunit association in diploids carrying two electrophoretically distinct alleles of the structural gene ADR2. Twelve semidominant constitutive mutants could be attributed to gene ADR1 (ADR1 c-alleles) previously identified by recessive mutants with blocked derepression. This suggested a positive regulatory role of the ADR1 gene product on the expression of the ADHII-structural gene. A pleiotropic mutation ccr1 (Ciriacy, 1977) was epistatic over glucose-resistant ADHII-formation caused by ADR1 c-alleles. From this it was concluded that CCR1 specifies for a product co-activating the structural gene or modifying the ADR1-gene product. A further regulatory element (gene designation ADR4) not linked to the structural gene could be identified upon isolation of recessive constitutive mutants adr4 from a ccr1 ADR1 c-double mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号