首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of four l-alanine:2-oxoglutarate aminotransferase (AOAT) isoenzymes (AOAT-like proteins): alanine aminotransferase 1 and 2 (AlaAT1 and AlaAT2, EC 2.6.1.2) and l-glutamate:glyoxylate aminotransferase 1 and 2 (GGAT1 and GGAT2, EC 2.6.1.4) was demonstrated in Arabidopsis thaliana leaves. These enzymes differed in their substrate specificity, susceptibility to pyridoxal phosphate inhibitors and behaviour during molecular sieving on Zorbax SE-250 column. A difference was observed in the electrostatic charge values at pH 9.1 between GGAT1 and GGAT2 as well as between AlaAT1 and AlaAT2, despite high levels of amino acid sequence identity (93 % and 85 %, respectively). The unprecedented evidence for the monomeric structure of both AlaAT1 and AlaAT2 is presented. The molecular mass of each enzyme estimated by molecular sieving on Sephadex G-150 and Zorbax SE-250 columns and SDS/PAGE was approximately 60 kDa. The kinetic parameters: Km (Ala)=1.53 mM, Km (2-oxoglutarate)=0.18 mM, kcat=124.6 s−1, kcat/Km=8.1 × 104 M−1·s−1 of AlaAT1 were comparable to those determined for other AlaATs isolated from different sources. The two studied GGATs also consisted of a single subunit with molecular mass of 47.3–70 kDa. The estimated Km values for l-glutamate (1.2 mM) and glyoxylate (0.42 mM) in the transamination catalyzed by putative GGAT1 contributed to indentification of the enzyme. Based on these results we concluded that each of four AOAT genes in Arabidopsis thaliana leaves expresses different AOAT isoenzyme, functioning in a native state as a monomer.  相似文献   

2.
The conversion of (R)- to (S)-β-aminoisobutyrate was observed in the presence of d-3-aminoisobutyrate-pyruvate aminotransferase, aminobutyrate aminotransferase, pyruvate and l-glutamate. The reverse reaction was also found in the presence of 2-oxoglutarate and l-alanine. Neither d-3-aminoisobutyrate-pyruvate aminotransferase nor aminobutyrate aminotransferase revealed a racemase activity of the enantiomorphs.  相似文献   

3.
4.
The activity of highly purified L-serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) from rye seedlings was inhibited competitively by 5-aminolevulinate (ALA, Ki = 5 mM) SGAT was activated by hematin. Protoporphyrin IX and hematin inhibited irreversibly the activity of highly purified glutamate:glyoxylate aminotransferase (GGAT, EC 2.6.1.2) from rye seedlings. SGAT was found to catalyse transamination between ALA and hydroxypyruvate, whereas GGAT that between ALA and 2-oxoglutarate or pyruvate. It is suggested that SGAT is involved in the process of degradation of the excess ALA which has not been incorporated into porphyrin compounds.  相似文献   

5.
In photorespiration, peroxisomal glutamate:glyoxylate aminotransferase (GGAT) catalyzes the reaction of glutamate and glyoxylate to produce 2-oxoglutarate and glycine. Previous studies demonstrated that alanine aminotransferase-like protein functions as a photorespiratory GGAT. Photorespiratory transamination to glyoxylate, which is mediated by GGAT and serine glyoxylate aminotransferase (SGAT), is believed to play an important role in the biosynthesis and metabolism of major amino acids. To better understand its role in the regulation of amino acid levels, we produced 42 GGAT1 overexpression lines that express different levels of GGAT1 mRNA. The levels of free serine, glycine, and citrulline increased markedly in GGAT1 overexpression lines compared with levels in the wild type, and levels of these amino acids were strongly correlated with levels of GGAT1 mRNA and GGAT activity in the leaves. This accumulation began soon after exposure to light and was repressed under high levels of CO(2). Light and nutrient conditions both affected the amino acid profiles; supplementation with NH(4)NO(3) increased the levels of some amino acids compared with the controls. The results suggest that the photorespiratory aminotransferase reactions catalyzed by GGAT and SGAT are both important regulators of amino acid content.  相似文献   

6.
In the photorespiratory process, peroxisomal glutamate:glyoxylate aminotransferase (GGAT) catalyzes the reaction of glutamate and glyoxylate to 2-oxoglutarate and glycine. Although GGAT has been assumed to play important roles for the transamination in photorespiratory carbon cycles, the gene encoding GGAT has not been identified. Here, we report that an alanine:2-oxoglutarate aminotransferase (AOAT)-like protein functions as GGAT in peroxisomes. Arabidopsis has four genes encoding AOAT-like proteins and two of them (namely AOAT1 and AOAT2) contain peroxisomal targeting signal 1 (PTS1). The expression analysis of mRNA encoding AOATs and EST information suggested that AOAT1 was the major protein in green leaves. When AOAT1 fused to green fluorescent protein (GFP) was expressed in BY-2 cells, it was found to be localized to peroxisomes depending on PTS1. By screening of Arabidopsis T-DNA insertion lines, an AOAT1 knockout line (aoat1-1) was isolated. The activity of GGAT and alanine:glyoxylate aminotransferase (AGAT) in the above-ground tissues of aoat1-1 was reduced drastically and, AOAT and glutamate:pyruvate aminotransferase (GPAT) activity also decreased. Peroxisomal GGAT was detected in the wild type but not in aoat1-1. The growth rate was repressed in aoat1-1 grown under high irradiation or without sugar, though differences were slight in aoat1-1 grown under low irradiation, high-CO2 (0.3%) or high-sugar (3% sucrose) conditions. These phenotypes resembled those of photorespiration-deficient mutants. Glutamate levels increased and serine levels decreased in aoat1-1 grown in normal air conditions. Based on these results, it was concluded that AOAT1 is targeted to peroxisomes, functions as a photorespiratory GGAT, plays a markedly important role for plant growth and the metabolism of amino acids.  相似文献   

7.
Salmonella enterica serovar Typhimurium utilizes a wide range of growth substrates, some of which are relatively novel. One of these unusual substrates is d-glucosaminate, which is metabolized by the enzymes encoded in the dga operon. d-Glucosaminate is transported and converted to d-glucosaminate-6-phosphate (G6P) by a phosphotransferase system, composed of DgaABCD. The protein product of dgaE, d-glucosaminate-6-phosphate ammonia lyase (DGL), converts G6P to 2-keto-3-deoxygluconate-6-phosphate, which undergoes a retroaldol reaction catalyzed by the DgaF protein to give d-glyceraldehyde-3-phosphate and pyruvate. We have now developed an improved synthesis of G6P which gives a higher yield. The DGL reaction is of mechanistic interest because it is one of only a few enzymes in the pyridoxal-5′-phosphate (PLP) dependent aminotransferase superfamily known to catalyze reaction of a d-amino acid substrate. The pH dependence of DGL shows an optimum at 7.5–8.5, suggesting a requirement for a catalytic base. α-Glycerophosphate and inorganic phosphate are weak competitive inhibitors, with Ki values near 30 mM, and d-serine is neither a substrate nor an inhibitor. We have found in rapid-scanning stopped-flow experiments that DGL reacts rapidly with its substrate to form a quinonoid intermediate with λmax = 480 nm, within the dead time (ca. 2 msec), which then rapidly decays (k = 279 s 1) to an intermediate with absorption between 330 and 350 nm, probably an aminoacrylate complex. We suggest a mechanism for DGL and propose that the unusual stereochemistry of the DGL reaction requires a catalytic base poised on the opposite face of the PLP-substrate complex from the other members of the aminotransferase superfamily.  相似文献   

8.
When provided with glycollate, peroxisomal extracts of leaves of spinach beet (Beta vulgaris L. cv.) converted L-serine and L-glutamate to hydroxypyruvate and 2-oxoglutarate respectively. When approximately saturating concentrations of each of these amino acids were incubated separately with glycollate, the utilization of serine was greater than that of glutamate. The utilization of glutamate was substantially reduced by the presence of relatively low concentrations of serine in the reaction mixture, whereas even high concentrations of glutamate caused only small reductions in serine utilization. Over the entire range of concentrations of amino acids examined, serine was invariably the preferred amino-group donor, but this preference was abolished at higher concentrations of glyoxylate. Serine not only competed favourably for glyoxylate but also inhibited L-glutamate: glyoxylate aminotransferase (GGAT), the degree of inhibition depending upon the glyoxylate concentration. Studies of L-serine: glyoxylate aminotransferase (SGAT) and GGAT in partially purified extracts from spinach-beet leaves confirmed that serine competitively inhibited GGAT but glutamate did not affect SGAT. Both enzymes were inhibited by high glyoxylate concentrations, the inhibition being relieved by suitably high concentrations of the appropriate amino acid. It is concluded that at the low glyoxylate concentrations likely to occur in vivo, the preferential utilization of serine would ensure flux through the glycollate pathway to glycerate, but at higher concentrations of glyoxylate, both enzymes could be fully active in glyoxylate amination.Abbreviations SGAT L-serine: glyoxylate aminotransferase - GGAT L-glutamate: glyoxylate aminotransferase  相似文献   

9.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

10.
Kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase were co-purified and crystallized as yellow cubes from human liver particulate fraction. The crystalline enzyme was homogeneous by the criteria of electrophoresis, isoelectric focusing, gel filtration, sucrose-density-gradient centrifugation and analytical ultracentrifugation. The molecular weight of the enzyme was calculated as approx. 90000, 89000 and 99000 by the use of gel filtration, analytical ultracentrifugation and sucrose-density-gradient centrifugation respectively, with two identical subunits. The enzyme has a s20,w value of 5.23S, an isoelectric point of 8.3 and a pH optimum between 9.0 and 9.5. The enzyme solution showed absorption maxima at 280 and 420nm. The enzyme catalysed transamination between several l-amino acids and pyruvate or glyoxylate. The order of effectiveness of amino acids was alanine>serine>glutamine>glutamate>methionine>kynurenine = phenylalanine = asparagine>valine>histidine>lysine>leucine>isoleucine>arginine>tyrosine = threonine>aspartate, with glyoxylate as amino acceptor. The enzyme was active with glyoxylate, oxaloacetate, hydroxypyruvate, pyruvate, 4-methylthio-2-oxobutyrate and 2-oxobutyrate, but showed little activity with phenylpyruvate, 2-oxoglutarate and 2-oxoadipate, with kynurenine as amino donor. Kynurenine–glyoxylate aminotransferase activity was competitively inhibited by the addition of l-alanine or l-serine. From these results we conclude that kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase activities of human liver are catalysed by a single protein. Kinetic parameters for the kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase, serine–pyruvate aminotransferase and alanine–hydroxypyruvate aminotransferase reactions of the enzyme are presented.  相似文献   

11.
12.
Mycobacterium tuberculosis l-alanine dehydrogenase (MTB l-AlaDH) is one of the important drug targets for treating latent/persistent tuberculosis. In this study we used crystal structure of the MTB l-AlaDH bound with cofactor NAD+ as a structural framework for virtual screening of our in-house database to identified new classes of l-AlaDH inhibitor. We identified azetidine-2,4-dicarboxamide derivative as one of the potent inhibitor with IC50 of 9.22 ± 0.72 μM. Further lead optimization by synthesis leads to compound 1-(isonicotinamido)-N2,N4-bis(benzo[d]thiazol-2-yl)azetidine-2,4-dicarboxamide (18) with l-AlaDH IC50 of 3.83 ± 0.12 μM, 2.0 log reduction in nutrient starved dormant MTB model and MIC of 11.81 μM in actively replicative MTB.  相似文献   

13.
《Process Biochemistry》2010,45(12):1912-1915
Production of pyruvate from lactate through biocatalysis is a valuable process for its simple composition of reaction system and convenience of recovery. Biocatalyst with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) can effectively catalyze lactate into pyruvate. To reduce the cost of biocatalyst preparation caused by indispensable lactate addition, the mutants with constitutive iLDH of Pseudomonas sp. XP-M2 were screened. Mutant XP-LM exhibited high iLDHs activities in minimal salt medium with cheap substrate glucose as the carbon source. The biocatalyst (8.2 g dry cell weight l−1) containing 169.8 U l−1 l-iLDH was prepared with 20 g 1−1 glucose. The cost-effective biocatalyst prepared from the mutant XP-LM could efficiently catalyze lactate into pyruvate with high yield (0.961 mol mol−1). Based on the different thermostability of d-iLDH and l-iLDH in the biocatalyst, whole cells of the strain might also have the potential in production of pyruvate and d-lactate from racemic lactate.  相似文献   

14.
Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5’-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.  相似文献   

15.
In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70 °C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4 °C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP+ as cofactor, and the resultant NADPH can be detected spectrometrically at 340 nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340 nm increased linearly with the increasing l-glutamate concentration within the range of 10  400 μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples.  相似文献   

16.
Myocardial energy expenditure (MEE) and 2-oxoglutarate are elevated in chronic heart failure (CHF) patients compared with healthy controls. To explore whether 2-oxoglutarate could reflect the levels of MEE and predict the prognosis of CHF, 219 CHF patients and 66 healthy controls were enrolled. 2-Oxoglutarate was assayed with Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC/MS/MS). CHF patients were divided into 4 groups according to interquartile range of MEE and followed for death or recurrent hospital admission due to CHF for the mean follow-up time 6.64 ± 0.16 months. 2-Oxoglutarate was increased in CHF patients compared with controls (P < 0.01) and correlated with estimated glomerular filtration rate (r = 0.142, P = 0.036), age (r =  0.269, P < 0.01) and MEE levels (r = 0.307, P < 0.01) in a multiple linear correlation analysis in CHF patients. Furthermore, 2-oxoglutarate (OR = 3.470, 95% CI = 1.557 to 7.730, P = 0.002), N-terminal pro-B-type natriuretic peptide (OR = 4.013, 95% CI = 1.553 to 10.365, P = 0.004), age (OR = 1.611, 95% CI = 1.136 to 2.283, P = 0.007) and left ventricular ejection fraction (OR = 7.272, 95% CI = 3.110 to 17.000, P < 0.001) were independently associated with MEE on multiple logistic regression analysis. Kaplan–Meier event curves showed that high 2-oxoglutarate levels were associated with adverse outcomes (Log Rank, Chi2 = 4.026, P = 0.045). This study showed that serum 2-oxoglutarate is associated with MEE levels, which can be used as potential biomarkers for MEE, and it can reflect the clinical severity and short-term outcome of CHF.  相似文献   

17.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

18.
Mu X  Qi L  Qiao J  Zhang H  Ma H 《Analytical biochemistry》2012,421(2):499-505
Alanine aminotransferase (ALT), which catalyzes the reversible conversion between l-glutamic acid (l-Glu) and l-alanine (l-Ala), is one of the most active aminotransferases in the clinical diagnosis of liver diseases. This work displays a microanalytical method for evaluating ALT enzyme kinetics using a microchip electrophoresis laser-induced fluorescence system. Four groups of amino acid (AA) mixtures, including the substrates of ALT (l-Glu and l-Ala), were effectively separated. Under the optimized conditions, the quantitative analysis of l-Glu and l-Ala was conducted and limits of detection (signal/noise = 3) for l-Glu and l-Ala were 4.0 × 10?7 and 2.0 × 10?7 M, respectively. In the reaction catalyzed by ALT, enzyme kinetic constants were determined for both the forward and reverse reactions by monitoring the concentration decrease of substrate AAs (l-Ala and l-Glu), and the Km and Vmax values were 10.12 mM and 0.48 mM/min for forward reaction and 3.22 mM and 0.22 mM/min for reverse reaction, respectively. Furthermore, the applicability of this assay was assessed by analysis of real serum samples. The results demonstrated that the proposed method could be used for kinetic study of ALT and shows great potential in the real application.  相似文献   

19.
The inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with carboxylates such as the C1–C5 aliphatic carboxylates, oxalate, malonate, maleate, malate, pyruvate, lactate, citrate and some benzoates has been investigated. The best Can2 inhibitors were acetate and maleate (KIs of 7.3–8.7 μM), whereas formate, acetate, valerate, oxalate, maleate, citrate and 2,3,5,6-tetrafluorobenzoate showed less effective inhibition, with KIs in the range of 42.8–88.6 μM. Propionate, butyrate, malonate, l-malate, pyruvate, l-lactate and benzoate, were weak Can2 inhibitors, with inhibition constants in the range of 225–1267 μM. Nce103 was more susceptible to inhibition with carboxylates compared to Can2, with the best inhibitors (maleate, benzoate, butyrate and malonate) showing KIs in the range of 8.6–26.9 μM. l-Malate and pyruvate together with valerate were the less efficient Nce103 inhibitors (KIs of 87.7–94.0 μM), while the remaining carboxylates showed a compact behavior of efficient inhibitors (KIs in the range of 35.1–61.6 μM). Notably the inhibition profiles of the two fungal β-CAs was very different from that of the ubiquitous host enzyme hCA II (belonging to the α-CA family), with maleate showing selectivity ratios of 113.6 and 115 for Can2 and Nce103, respectively, over hCA II inhibition. Therefore, maleate is a promising starting lead molecule for the development of better, low nanomolar, selective β-CA inhibitors.  相似文献   

20.
d-Glutamate is an essential biosynthetic building block of the peptidoglycans that encapsulate the bacterial cell wall. Glutamate racemase catalyzes the reversible formation of d-glutamate from l-glutamate and, hence, the enzyme is a potential therapeutic target. We show that the novel cyclic substrate–product analogue (R,S)-1-hydroxy-1-oxo-4-amino-4-carboxyphosphorinane is a modest, partial noncompetitive inhibitor of glutamate racemase from Fusobacterium nucleatum (FnGR), a pathogen responsible, in part, for periodontal disease and colorectal cancer (Ki = 3.1 ± 0.6 mM, cf. Km = 1.41 ± 0.06 mM). The cyclic substrate–product analogue (R,S)-4-amino-4-carboxy-1,1-dioxotetrahydro-thiopyran was a weak inhibitor, giving only ∼30% inhibition at a concentration of 40 mM. The related cyclic substrate–product analogue 1,1-dioxo-tetrahydrothiopyran-4-one was a cooperative mixed-type inhibitor of FnGR (Ki = 18.4 ± 1.2 mM), while linear analogues were only weak inhibitors of the enzyme. For glutamate racemase, mimicking the structure of both enantiomeric substrates (substrate–product analogues) serves as a useful design strategy for developing inhibitors. The new cyclic compounds developed in the present study may serve as potential lead compounds for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号