首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Isozymes of UGPase with unique catalytic properties were purified from the cold-induced-sweetening (CIS) resistant cultivar Snowden (Solanum tuberosum). Two distinct peaks of UGPase activity were obtained when protein extracts were subjected to anion-exchange chromatography on DEAE-Sephacel. Polypeptides in the first eluted fraction (A-I) were ionically similar to the UGPase isozyme UGP3 previously purified and characterized from the cold-sweetening sensitive cultivar Norchip (Sowokinos et al. 1993, Plant Physiol 101: 1073-1080). Seventy-two percent of the total endogenous UGPase activity in Snowden (cv.) tubers, however, was found in a more basic protein fraction (A-II) that is not found in the Norchip cultivar. This study reports on the physicochemical and kinetic properties of these new polypeptides that demonstrate UGPase activity. The reaction in the direction of UDP-Glc synthesis was specific for the substrates Glc-1-P and UTP and there was an absolute requirement for Mg2+ ions. The catalytic properties of UGP5 were markedly different from UGPase isozymes previously described in terms of (1) affinity for the substrate Glc-1-P, (2) pH optimum, (3) maximum reaction velocity and (4) sensitivity to product inhibition with UDP-Glc. Chi-square analysis of fifty-four genetically diverse potato lines revealed that resistance to CIS was highly correlated with the presence of the A-II isozymes of UGPase. The kinetic properties of these unique forms of UGPase may underlie, in part, a tuber's ability to resist sweetening in the cold.  相似文献   

2.
The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by alpha-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism.  相似文献   

3.
Galactose-1-phosphate uridyltransferase (EC 2.7.7.10), responsible for the conversion of galactose-1-phosphate (Gal-1-P) to uridine diphosphate galactose (UDPgal) was examined in fruit peduncles of Cucumis sativus L. Two uridyltransferases (pyrophosphorylases), from I and II, were partially purified and resolved on a diethylamino-ethyl-cellulose column. Form I can utilize glucose-1-phosphate (Glc-1-P), while form II can utilize either Gal-1-P or Glc-1-P, with a preference for Gal-1-P. Form I was more heat stable than form II. Both Glc-1-P and Gal-1-P activities of form II were inactivated at the same rate by heating. The finding of a uridyltransferase with preference for Gal-1-P indicates that cucumber may have a Gal-1-P uridyltransferase (pyrophosphorylase) pathway for the catabolism of stachyose in the peduncles. The absence of the enzyme UDP-glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) in this tissue rules out catabolism by the classical Leloir pathway. The incorporation of carbon from UDPglc into Glc-1-P as opposed to sucrose may be regulated by the activities of the uridyltransferases. Pyrophosphate, in the same concentration range, inhibits UDP-gal formation (Ki=0.58±0.10 mM) and stimulates Glc-1-P formation. The ratio of units of pyrophosphatase to units of Gal-1-P uridyltransferase was higher in peduncles from growing fruit than from unpollinated fruit. Modulation of carbon partitioning through a uridyltransferase pathway may be a factor controlling growth of the cucumber fruit.Abbreviations Gal-1-P Galactose-1-phosphate - Glc-1-P glucose-1-phosphate - UDPgal uridine diphosphate galactose - UDPglc uridine diphosphate glucose Paper No. 6908 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned  相似文献   

4.
UDP-glucose (UDPG) pyrophosphorylase (UGPase) produces UDPG for sucrose and polysaccharide synthesis and glycosylation reactions. In this study, several barley UGPase mutants were produced, either single amino acid mutants or involving deletions of N- and C-terminal domains (Ncut and Ccut mutants, respectively) and of active site region (“NB loop”). The Del-NB mutant yielded no activity, whereas Ncut deletions and most of Ccut mutants, including short deletions at the so called “I-loop” region of C-terminal domain, as well as a single K260A mutant resulted in very low activity. For wt and the mutants, kinetics with UDPG were linear on reciprocal plots, whereas PPi at concentrations above 1 mM exerted strong substrate inhibition. Both K260A and most of the Ccut mutants had very high Km with PPi (up to 33 mM), whereas Ncut deletions had greatly increased Km with UDPG (up to 57 mM). Surprisingly, an 8 amino acid deletion from end of the C-terminus resulted in an enzyme (Ccut-8 mutant) with 44% higher activity when compared to wt, but with similar Km values. Whereas Ccut-8 existed solely as a monomer, other deletion mutants had a more oligomerized status, e.g. Ncut mutants existing primarily as dimers. Overall, the data confirmed the essential role of NB loop in catalysis, but also pointed out to the role of both N- and C-termini for activity, substrate binding and oligomerization. The importance of oligomerization status for enzymatic activity of UGPase is discussed.  相似文献   

5.
This work reports the purification and biochemical characterization of angiotensin I-converting enzyme (ACE) from ostrich (Struthio camelus) lung. The molecular weight of the purified enzyme was approximately evaluated to be 200 kDa and the maximum enzyme activity was observed at pH 7.5. The enzyme activity was increased by detergents of Triton X-100 (0.01%), cetyltrimethylammonium bromide (CTAB) (0.1 and 1 mM) and sodium dodecyl sulfate (SDS) (0.1 mM), while decreased by Triton X-100 (1% and 10%) and SDS (1 mM and 10 mM). The secondary and tertiary structure and activity of ACE in the absence and presence of trifluoroethanol (TFE) were investigated using circular dichroism, fluorescence quenching and UV–visible spectroscopy, respectively. Our results revealed that TFE stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). The Km, Kcat and Kcat/Km values of ostrich ACE towards FAPGG were 0.8 × 10?4 M, 59,240 min?1 and 74 × 107 min?1 M?1, respectively. The values of IC50 and Ki for captopril were determined to be 36.5 nM and 16.6 nM, respectively. In conclusion, ostrich lung ACE is a new enzyme which could be employed as a candidate for studying ACE structure and its natural or synthetic inhibitors.  相似文献   

6.
7.
Mu X  Qi L  Qiao J  Zhang H  Ma H 《Analytical biochemistry》2012,421(2):499-505
Alanine aminotransferase (ALT), which catalyzes the reversible conversion between l-glutamic acid (l-Glu) and l-alanine (l-Ala), is one of the most active aminotransferases in the clinical diagnosis of liver diseases. This work displays a microanalytical method for evaluating ALT enzyme kinetics using a microchip electrophoresis laser-induced fluorescence system. Four groups of amino acid (AA) mixtures, including the substrates of ALT (l-Glu and l-Ala), were effectively separated. Under the optimized conditions, the quantitative analysis of l-Glu and l-Ala was conducted and limits of detection (signal/noise = 3) for l-Glu and l-Ala were 4.0 × 10?7 and 2.0 × 10?7 M, respectively. In the reaction catalyzed by ALT, enzyme kinetic constants were determined for both the forward and reverse reactions by monitoring the concentration decrease of substrate AAs (l-Ala and l-Glu), and the Km and Vmax values were 10.12 mM and 0.48 mM/min for forward reaction and 3.22 mM and 0.22 mM/min for reverse reaction, respectively. Furthermore, the applicability of this assay was assessed by analysis of real serum samples. The results demonstrated that the proposed method could be used for kinetic study of ALT and shows great potential in the real application.  相似文献   

8.
d-Glutamate is an essential biosynthetic building block of the peptidoglycans that encapsulate the bacterial cell wall. Glutamate racemase catalyzes the reversible formation of d-glutamate from l-glutamate and, hence, the enzyme is a potential therapeutic target. We show that the novel cyclic substrate–product analogue (R,S)-1-hydroxy-1-oxo-4-amino-4-carboxyphosphorinane is a modest, partial noncompetitive inhibitor of glutamate racemase from Fusobacterium nucleatum (FnGR), a pathogen responsible, in part, for periodontal disease and colorectal cancer (Ki = 3.1 ± 0.6 mM, cf. Km = 1.41 ± 0.06 mM). The cyclic substrate–product analogue (R,S)-4-amino-4-carboxy-1,1-dioxotetrahydro-thiopyran was a weak inhibitor, giving only ∼30% inhibition at a concentration of 40 mM. The related cyclic substrate–product analogue 1,1-dioxo-tetrahydrothiopyran-4-one was a cooperative mixed-type inhibitor of FnGR (Ki = 18.4 ± 1.2 mM), while linear analogues were only weak inhibitors of the enzyme. For glutamate racemase, mimicking the structure of both enantiomeric substrates (substrate–product analogues) serves as a useful design strategy for developing inhibitors. The new cyclic compounds developed in the present study may serve as potential lead compounds for further development.  相似文献   

9.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

10.
《Process Biochemistry》2010,45(7):1088-1093
An extracellular thermostable α-galactosidase from Aspergillus parasiticus MTCC-2796 was purified 16.59-fold by precipitation with acetone, followed by sequential column chromatography with DEAE-Sephadex A-50 and Sephadex G-100. The purified enzyme was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It was found to be a monomeric protein with a molecular weight of about 67.5 kDa. The purified enzyme showed optimum activity against o-nitrophenyl-α-d-galactopyranoside (oNPG) at pH 5.0 and a temperature of 50 °C. The enzyme was thermostable, showing complete activity even after heating at 65 °C for 30 min. The enzyme showed strict substrate specificity for α-galactosides and hydrolyzed oNPG (Km = 0.83 mM), melibiose (Km = 2.48 mM) and raffinose (Km = 5.83 mM). Among metal ions and reagents tested, Ca2+ and K+ enhanced the enzymatic activity, but Mg2+, Mn2+, ethylenediaminetetraacetic acid (EDTA) and 2-mercaptoethanol showed no effect, while Ag+, Hg2+ and Co2+ strongly inhibited the activity of the enzyme. The enzyme catalyzed the transglycosylation reaction for the synthesis of melibiose.  相似文献   

11.
The phytase of Sporotrichum thermophile was purified to homogeneity using acetone precipitation followed by ion-exchange and gel-filtration column chromatography. The purified phytase is a homopentamer with a molecular mass of ~456 kDa and pI of 4.9. It is a glycoprotein with about 14% carbohydrate, and optimally active at pH 5.0 and 60 °C with a T1/2 of 16 h at 60 °C and 1.5 h at 80 °C. The activation energy of the enzyme reaction is 48.6 KJ mol?1 with a temperature quotient of 1.66, and it displayed broad substrate specificity. Mg2+ exhibited a slight stimulatory effect on the enzyme activity, while it was markedly inhibited by 2,3-butanedione suggesting a possible role of arginine in its catalysis. The chaotropic agents such as guanidinium hydrochloride, urea and potassium iodide strongly inhibited phytase activity. Inorganic phosphate inhibited enzyme activity beyond 3 mM. The maximum hydrolysis rate (Vmax) and apparent Michaelis–Menten constant (Km) for sodium phytate were 83 nmol mg?1 s?1 and 0.156 mM, respectively. The catalytic turnover number (Kcat) and catalytic efficiency (Kcat/Km) of phytase were 37.8 s?1 and 2.4 × 105 M?1 s?1, respectively. Based on the N-terminal and MALDI–LC–MS/MS identified amino acid sequences of the peptides, the enzyme did not show a significant homology with the known phytases.  相似文献   

12.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

13.
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0 × 105 s−1 and a kcat/Km of 4.7 × 106 M−1 × s−1. This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502 nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4–4.4 mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58 mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38 μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.  相似文献   

14.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

15.
Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of alliin with the enzyme alliinase (EC 4.4.1.4). A bacterium Cupriavidus necator with the ability of alliinase production was isolated from a soil sample and was identified by morphological, biochemical and 16S rRNA sequence. Alliinase production was optimised and it was further purified to apparent homogeneity with 103-fold purification and specific activity of 209 U/mg of protein by using DEAE Cellulose and Sephadex G-100 chromatography. The enzyme is a homodimer of molecular weight 110 kDa with two subunits of molecular weight 55 kDa each. The optimum activity of the purified enzyme was found at pH 7 and the optimum temperature was 35 °C. The enzyme exhibited maximum reaction rate (Vmax) at 74.65 U/mg and Michaelis–Menten constant (Km) was determined to be 0.83 mM when alliin was used as a substrate. The cytotoxic activity of in-situ generated allicin using purified alliinase and alliin was assessed on MIA PaCa-2 cell line using MTT assay and Acridine orange–ethidium bromide staining. This approach of in-situ allicin generation suggests a novel therapeutic strategy wherein alliin and alliinase work together synergistically to produce cytotoxic agent allicin.  相似文献   

16.
An oxygen-insensitive intracellular enzyme that is responsible for the decolorization of azo dyes was purified from Escherichia coli CD-2. The molecular weight of the purified enzyme was estimated as 27,000 ± 500 Da. Protein identification indicated that the enzyme had high sequence homology with E. coli K12 quinone reductase, and the enzyme was proved to have both azoreductase and quinone reductase activity. With methyl red as substrate, the optimal pH value and temperature were 6.5 and 37 °C, respectively. The enzyme was stable under different physiochemical conditions. The azoreductase activity was restrained by SDS and was almost completely inhibited by Co2+ and Hg2+. Km and Vmax values were 0.18 mM and 8.12 U mg?1 of protein for NADH and 0.05 mM and 6.46 U mg?1 of protein for methyl red, respectively. The purified enzyme could efficiently decolorize methyl red with both NADH and NADPH as electron donors.  相似文献   

17.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

18.
Energetics of the catalysis of Class II α-mannosidase (E.C.3.2.1.24) from Aspergillus fischeri was studied. The enzyme showed Kcat/Km for Man (α1-3) Man, Man (α1-2) Man and Man (α1-6) Man as 7488, 5376 and 3690 M?1 min?1, respectively. The activation energy, Ea was 15.14, 47.43 and 71.21 kJ/mol for α1-3, α1-2 and α1-6 linked mannobioses, respectively, reflecting the energy barrier in the hydrolysis of latter two substrates. The enzyme showed Kcat/Km as 3.56 × 105 and 4.61 × 105 M?1 min?1 and Ea as 38.7 and 8.92 kJ/mol, towards pNPαMan and 4-MeUmbαMan, respectively. Binding of Swainsonine to the enzyme is stronger than that of 1-deoxymannojirimycin.  相似文献   

19.
This work is a report of the characterization of an alkaline lipolytic enzyme isolated from Bacillus subtilis DR8806. The extracellular extract was concentrated using ammonium sulfate, and ultrafiltration. The active enzyme was purified by Q-sepharose ion exchange chromatography. The molecular mass of the enzyme was estimated to be 60.25 kDa based on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The optimum pH and temperature of this enzyme were observed to be 8.0 and 50 °C, respectively. The enzyme exhibited a half-life of 72 min at its optimum temperature. It was stable in the presence of metal ions (10 mM) such as Ca2+, K+ and Na+, whereas Cu2+, Fe2+, Zn2+, Mn2+, Co2+, Mg2+ and Hg2+ were found to have inhibitory effects. However, the enzyme activity was not affected significantly by 1% Triton X-100. The study of substrate specificity showed that the purified enzyme has a preferential specificity for small ester of p-nitrophenyl acetate (C2), and it was the most efficiently hydrolyzed substrate as compared to the other esters. The kinetic parameters showed that the enzyme has Km of 4.2 mM and Vmax of 151 μmol min−1 mg−1 for p-nitrophenyl acetate. The hydrolysis rates of the fluorescence substrates were increased in the presence of the purified enzyme. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

20.
We characterized a glycoside hydrolase family 112 protein from Opitutus terrae (Oter_1377 protein). The enzyme phosphorolyzed d-galactosyl-β1→4-l-rhamnose (GalRha) and also showed phosphorolytic activity on d-galactosyl-β1→3-d-glucose as a minor substrate. In the reverse reaction, the enzyme showed higher activity on l-rhamnose derivatives than on d-glucose derivatives. The enzyme was stable up to 45 °C and at pH 6.0–7.0. The values of kcat and Km of the phosphorolytic activity of the enzyme on GalRha were 60 s?1 and 2.1 mM, respectively. Thus, Oter_1377 protein was identified as d-galactosyl-β1→4-l-rhamnose phosphorylase (GalRhaP). The presence of GalRhaP in O. terrae suggests that genes encoding GalRhaP are widely distributed in different organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号