首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Five-month-old Datura innoxia plants were fed via the roots with either d(+)-hygrine-[2′-14C] or l(?)-hygrine-[2′-14C]. After 7 days the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, hyoscine, hyoscyamine and cuscohygrine were isolated from both groups of plants. d(+) but not l(?)-hygrine acts as a precursor for the tropane alkaloids whereas both enantiomers appeared to serve equally well in the biosynthesis of cuscohygrine.  相似文献   

2.
Datura innoxia plants were fed via the roots with cinnamic acid-[214C], (±)-phenyllactic (2-hydroxy-3-phenylpropanoic) acid-[214C] and phenylalanine-[2-14C]. In each case apohyoscine, hyoscine, hyoscyamine and littorine were isolated from the aerial parts, and hyoscine, hyoscyamine and littorine from the roots. Cinnamic acid was not incorporated into the acid moieties of the alkaloids. Phenyllactic acid served as a better precursor than phenylalanine for tropic acid (hyoscine and hyoscyamine) and atropic acid (apohyoscine). Phenylalanine served as an effective precursor for the phenyllactic acid moiety of Littorine.  相似文献   

3.
Datura innoxia plants were wick fed with angelic acid-[1-14C] and l-isoleucine-[U-14C] to act as a positive control. After 7 days the root alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, and 3α,6β-ditigloyloxytropan-7β-ol were isolated and it was determined that angelic acid is not a precursor for the tigloyl moiety of these alkaloids. Tiglic acid-[1-14C] which was fed via the roots to hydroponic cultures of Datura innoxia, was incorporated to a considerable degree after 8 days.  相似文献   

4.
Datura innoxia plants were fed the R- and S-isomers of [3-14C]-3-hydroxy-3-phenylpropanoic acid, and [3-14C]cinnamic acid along with dl-[4-3H]phenylalanine. The hyoscyamine and scopolamine isolated from the plants 7 days later were labeled with tritium, but devoid of 14C, indicating that 3-hydroxy-3-phenylpropanoic acid and cinnamic acid are not intermediates between phenylalanine and tropic acid. The [3H] tropic acid obtained by hydrolysis of the hyoscyamine was degraded and shown to have essentially all its tritium located at the para position of its phenyl group, a result consistent with previous work.  相似文献   

5.
Datura meteloides plants were fed via the roots with [1″,2′-14C]tigloyl hygroline and as a control, [2′-14C]hygrine. After a week the alkaloids were isolated and degraded. Despite hydrolysis of the putative precursor it was possible, by label ratio, to show that esterification occurs after, and not before, the tropane ring has been synthesized. Hygroline is proposed as a possible intermediate.  相似文献   

6.
The distribution of tropane alkaloids in organs of Anthocercis littorea and A. viscosa is reported. The following alkaloids have been isolated: atropine (hyoscyamine), apoatropine, noratropine (norhyoscyamine), littorine, hyoscine, norhyoscine, meteloidine, 3α, 6β-ditigloyloxytropan-7β-ol, 6β-tigloyloxytropan-3α-ol, 3α-tigloyloxytropane, tigloidine, tropine, ψ-tropine, (?)-tropan-3α-6β-diol, cuscohygrine and unknown bases.  相似文献   

7.
Datura innoxia plants were wick fed with (±)-2-methylbutyric acid-[1-14C] and harvested after 7 days. The root alkaloids 3α,6β-ditigloyloxytropane and 3α,6β-ditigloyloxytropan-7β-ol were isolated and degraded. In each case the radioactivity was located in the ester carbonyl group indicating that this acid is an intermediate in the biosynthesis of tiglic acid from l-isoleucine. On the other hand, (±)-2-hydroxy-2-methylbutyric acid-[1-14C], which was fed to hydroponic cultures of Datura innoxia alongside isoleucine[U-14C] positive control plants, is not an intermediate.  相似文献   

8.
Root cultures of various solanaceous plants grow well in vitro and produce large amounts of tropane alkaloids. Enzyme activity that converts hyoscyamine to 6β-hydroxyhyoscyamine is present in cell-free extracts from cultured roots of Hyoscyamus niger L. The enzyme hyoscyamine 6β-hydroxylase was purified 3.3-fold and characterized. The hydroxylation reaction has absolute requirements for hyoscyamine, 2-oxoglutarate, Fe2+ ions and molecular oxygen, and ascorbate stimulates this reaction. Only the l-isomer of hyoscyamine serves as a substrate; d-hyoscyamine is nearly inactive. Comparisons were made with a number of root, shoot, and callus cultures of the Atropa, Datura, Duboisia, Hyoscyamus, and Nicotiana species for the presence of the hydroxylase activity. Decarboxylation of 2-oxoglutarate during the conversion reaction was studied using [1-14C]-2-oxoglutarate. A 1:1 stoichiometry was shown between the hyoscyamine-dependent formation of CO2 from 2-oxoglutarate and the hydroxylation of hyoscyamine. Therefore, the enzyme can be classified as a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.-). Both the supply of hyoscyamine and the hydroxylase activity determine the amounts of 6β-hydroxyhyoscyamine and scopolamine produced in alkaloid-producing cultures.  相似文献   

9.
δ-N-Methylornithine, a tropane alkaloid precursor, is shown for the first time to be a natural plant constituent; it was isolated in radioactive form after feeding [5-14C]- and [5-3H]ornithine to Atropa belladonna. This finding supports the deduced role of δ-N-methylornithine in tropane alkaloid biosynthesis.  相似文献   

10.
The biosynthetic relations between protoberberine-, benzo[C]phenanthridine- and B-secoprotoberberine type alkaloids were demonstrated by use of (±)-tetrahydrocoptisine-[8,14-3H HCl, (±)-tetrahydrocorysamine-[8,14-3H]HCl and corynoline-[6-3H]HCl in Corydalis incisa, and the following results were presented. (±)-Tetrahydrocoptisine was converted to corynoline, corydalic acid methyl ester and corydamine hydrochloride. (±)-Tetrahydrocorysamine was converted to corynoline and corydalic acid methyl ester. Evidence that N-methyl-3-[6′-(3′,4′-methylenedioxyphenethylalcohol)]-4-methyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline-[α-3H] HCl was incorporated into corynoline-[11-3H] indicates the occurrence of the ring fission at C6-N followed by linking ofthe C6 and C13 positions in (±)-tetrahydrocoptisine and (±)-tetrahydrocorysamine, and suggests the participation of one of two possible intermediates in the biosynthesis of these alkaloids.  相似文献   

11.
dl-Ornithine-[2,3-13C2] was synthesized from acetate-[1-13C] and ethyl acetamidocyanoacetate-[2-13C]. This labelled material was mixed with dl-ornithine-[5-14C] and fed to Nicotiana glutinosa plants by the wick method. After 10 days the plants were harvested affording radioactive nicotine and nornicotine (0.14% and 0.051% specific incorporations, respectively). Even at these low specific incorporations an examination of their 13C NMR spectra established the incorporation of ornithine symmetrically into the pyrrolidine rings of these alkaloids. Satellites were observable at the signals due to C-2′, 3′, 4′ and 5′ positions, arising by the presence of contiguous carbons at C-2′, 3′ and C-4′, 5′.  相似文献   

12.
Tracer feeding experiments with Camptotheca acuminata plants show that [1′-14C]L-tryptophan, [Ar-3H4]L-tryptophan, [Ar-3H4,1′-14C]tryptophan, [1′-14C]-tryptamine, [2-14C]DL-mevalonate, and [2-14C]geraniol-[2-14C]nerol are incorporated into camptothecin. Direct stem injection of the labeled precursors into C. acuminata plants resulted in a substantial increase in the activity of isolated Camptotheca alkaloids as compared to root feeding of the same tracer.  相似文献   

13.
Three-month-old plants of Physalis alkekengi, Atropa belladonna and Hyoscyamus niger were fed via the roots with either d( + ) or l( - )-hygrine-[2′- 14C]. The feeding experiments were terminated after 7 days when the following alkaloids were isolated from the paired groups of plants: tigloidine, 3α-tigloyloxytropane and cuscohygrine from Physalis; hyoscyamine from Hyoscyamus and from Atropa. In contrast to Datura these genera appear to use both hygrine enantiomers in the biosynthesis of the tropane ring.  相似文献   

14.
Edward Leete 《Phytochemistry》1981,20(5):1037-1040
An aqueous solution of nicotine-[2′-14C] was painted on the leaves of 4-month-old tobacco plants (Nicotiana tabacum) which were harvested 3 weeks later. This tracer was similarly applied to excised tobacco leaves which were allowed to dry in air for 4 weeks. The alkaloids, were extracted with the addition of N′-isopropylnornicotine, a compound which has been previously isolated from air-cured tobacco. Radioactive nicotine and nornicotine were isolated from the intact plants with only minute activity in the N′-isopropylnornicotine. All three of these alkaloids were radioactive from the air-cured leaves, and degradation of the labelled N'-isopropylnornicotine indicated that all the activity was located at the C-2′ position. A higher level of activity was found in N′-isopropylnornicotine which was obtained from excised leaves which were fed the nicotine- [2′- 14C] in aqueous acetone, and were treated on subsequent days with aqueous acetone. These results are consistent with the hypothesis that N′-isopropylnornicotine is produced in the curing of tobacco leaves by reaction of nornicotine (formed by the demethylation of nicotine) with acetoacetate, followed by decarboxylation and reduction. The 13C NMR chemical shifts of the methyl groups of N′-isopropylnornicotine and related 1-isopropylpyrrolidines which have chirality at the α-position of the pyrrolidine ring, are significantly different (up to 7.5 ppm).  相似文献   

15.
The known metabolic pathway for hydrophenanthrene alkaloids in Papaver somniferum has been examined for occurrence in P. bracteatum, a species reported to contain thebaine but no codeine or morphine. 1,2-Dehydro-reticulinium-[3-14C] chloride and (±)-reticuline-[3-14C] were fed to P. bracteatum plants and both were incorporated, the former into reticuline and thebaine and the latter into thebaine, suggesting that thebaine biosynthesis is the same in the two species. Studies of the natural abundance of morphinan alkaloids in P. bracteatum and the results from feeding codeinone-[16-3H] and codeine-[16-3H] indicate that this species can reduce codeinone to codeine but can not perform either of the demethylations to produce codeinone or morphine. Fed thebaine-[16-3H] was substantially metabolized but not by pathways that involved demethylations to either oripavine or northebaine.  相似文献   

16.
In the biosynthesis of the benzazepine alkaloid alpinigenine a N-methylation step followed by hydroxylation α to nitrogen has now been shown more conclusively to be involved in the transformation of a N-heterocyclic ring system. After feeding Papaver bracteatum plants both the precursors (±)-tetrahydropalmatine-[8,13,14-3H] and (±)-tetrahydropalmatine methiodide-[8,13,14-3H;8-4C] an identical mode of abstraction of tritium was observed including a complete loss of the isotope from C-14. The next member in the biogenetic chain, muramine-[8-14C], was incorporated into alpinigenine very efficiently. Furthermore, using structurally different precursors not utilized for normal alkaloid formation, e.g. 2′-hydroxymethyl-laudanosine-[14CH2OH], 13-hydroxymuramine-[8-14C], the specificity of alkaloid metabolism was examined in the whole plant. Tracer dilution technique was applied to confirm the occurrence in the plant of three established intermediates. Chemical syntheses of four of the alkaloids used during these investigations were developed.  相似文献   

17.
Comparative feeding experiments in CuCl2,- and UV-treated lucerne (Medicago sativa) seedlings have shown that 2′,4,4′-trihydroxychalcone-[carbonyl-14C] and formononetin-[Me-14C] but not 2′,4′-dihydroxy-4-methoxychalcone-[carbonyl- 14C] or daidzein-[4-14C] were incorporated into the phytoalexins demethylhomopterocarpin, sativan and vestitol, and also into 9-O-methylcoumestrol. The synthesis of 9-O-methylcoumestrol is greatly stimulated by this abiotic treatment but coumestrol production is not noticeably affected. Daidzein and the trihydroxychalcone were precursors of coumestrol. The results are interpreted in favour of a mechanism in which methylation is an integral part of the aryl migration process associated with the biosynthesisof 4′-methoxyisoflavonoids. Formononetin, 2′,7-dihydroxy-4′-methoxyisoflavone-[Me-14C], 7-hydroxy-4′-methoxyisoflavanone-[Me-14C] and 2′,7-dihydroxy-4′-methoxyisoflavanone-[Me-14C] were all excellent precursors of demethylhomopterocarpin, sativan, vestitol and 9-O-methylcoumestrol, and thus a metabolic grid may be involved in their biosynthetic origin.  相似文献   

18.
The biosynthesis of the morphinandienone alkaloids norsinoacutine, sinoacutine and flavinantine has been studied using 1-3 H-sinoacutine, 1-3H-norsinoacutine, 1-3H-norsinoacutinols, l-[S-methyl-14C]-methionine, glycine-2-14C, 1-3H-8,14-dihydronorsalutaridine, 1-3 H-8,14-dihydrosalutaridine, 1-3H-sinomenine, 1-3H-isosinomenine, (±)-[2-14C]phenylalanine, (±)-[N-methyl-14C]orientaline and (±)-[N-methyl-14C]reticuline.  相似文献   

19.
The reaction of N-[1-13C] acetylimidazole with cytochrome c and guanidinated cytochrome c was evaluated as a means of introducing NMR-detectable groups as conformation-dependent probes. Resonances from both N-[1-13C]acetyl lysyl and O-[1-13C]acetyl tyrosyl groups were observed when ferricytochrome c was acetylated. However, only O-[1-13C]acetyl tyrosyl resonances were seen with acetylated guanidinated ferricytochrome c. Chemical shifts of the four O-[1-13C]acetyl tyrosyl groups were conformation dependent and ranged from 172 to 176 ppm. A convenient method for the preparation of N-[1-13C]acetylimidazole is described.  相似文献   

20.
Scopolamine is widely used for its anticholinergic properties. Because of higher physiological activity and less side effects the world demand of scopolamine is estimated to be ten times greater than other anticholinergic agents, hyoscyamine and atropine. Since natural production is limited, alternatives are required to boost the production. We report the introduction of mouse odc gene of polyamine biosynthesis pathway which is also the primary pathway of tropane alkaloids in Datura innoxia. Polyamines, mainly putrescine, serve as the common metabolite for tropane alkaloids and nicotine. We have overexpressed odc gene to modulate the metabolic flux downstream and eventually achieved higher accumulation of scopolamine in transgenic plants. Among six independent transformed lines one line (O10) produced scopolamine (0.258 μg/g dry weight) almost six times higher than that produced by control plants (0.042 μg/g DW). To our knowledge, this is the first report of odc overexpression in D. innoxia leading to higher scopolamine yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号