首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ascomycetous dark septate endophytic (DSE) fungi characterized by their melanized hyphae can confer abiotic stress tolerance in their associated plants in addition to improving plant growth and health. In this study inoculation of the DSE fungus Nectria haematococca Berk. & Broome significantly improved all the plant growth parameters like the plant height, stem girth, leaf characteristics and plant biomass of drought-stressed tomato. Root characters like the total root length, primary root diameter, 2nd order root number and diameter, root hair number and length were also significantly influenced by the fungal inoculation. Nevertheless, N. haematococca inoculation did not affect root colonization by native arbuscular mycorrhizal (AM) fungi and no significant correlation existed between the AM and DSE fungal variables examined. The proline accumulation in shoots of N. haematococca inoculated plants was significantly higher than uninoculated plants. The present study clearly indicates for the first time the ability of the DSE fungus, N. haematococca in inducing the drought stress tolerance and promoting the growth of the host plant under water stress.  相似文献   

2.
Hygraula nitens is a New Zealand native moth with aquatic larvae that feed on submerged aquatic plants. The larvae have been mainly observed using native Potamogeton and Myriophyllum species as a food source, although some studies reported larvae feeding on the alien macrophytes Hydrilla verticillata, Lagarosiphon major and Ceratophyllum demersum. Experimental mesocosm studies showed larvae had a major effect on H. verticillata, C. demersum, L. major, Elodea canadensis and Egeria densa. In both no choice and choice experiments H. nitens larvae showed a clear preference for and the highest consumption of C. demersum, while the native macrophyte Myriophyllum triphyllum ranked fourth out of five alien and two native plant species, indicating a preference of the larvae for alien macrophytes. Additional choice experiments using C. demersum, sampled from different waters in NZ, illustrated that there was a clear difference in H. nitens preference for plants based on their source. However although C. demersum had the lowest leaf dry matter content (LDMC) compared with the other macrophytes, neither the LDMC nor leaf carbon, nitrogen, phosphorus or total phenolic contents alone could explain the preferences of H. nitens, and we conclude that food choice is based on a combination of these and/or additional factors.  相似文献   

3.
The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance.  相似文献   

4.
Invasions of introduced plants are considered among the greatest threats to biodiversity worldwide. Aquatic habitats suffer invasion more frequently and extensively than do terrestrial habitats. Although the role of roots in plant anchoring and support is important, previous studies have focused much attention on the morphological traits of above-ground parts, with relatively less attention given to the root structures of aquatic plants. In this study, we aimed to compare differences in root morphological and structural traits between introduced and native plants in response to different substrates. We hypothesized that introduced aquatic plants have an advantage over native plants with regard to root trait values and plasticity. A total of six aquatic plants were used: Two invasive and one exotic noninvasive species were paired with their native counterparts according to life form (amphibious emergent, submerged and floating-leaved) and cultivated in substrates of clay, a clay/sand mixture (v:v = 1:1) or sand. Root morphological traits, topological indices and root relative distance plasticity indices were quantified. The results indicated that different substrates have various effects on the root traits of these six aquatic plants; the introduced plants generally exhibited higher plasticity than did their native counterparts of the same life form.  相似文献   

5.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

6.
The peculiarities of root growth and stress tolerance of transgenic tobacco plants with constitutive expression of NtEXPA1 and NtEXPA5 genes, as well as plants with reduced expression of NtEXPA4 gene encoding α-expansins of Nicotiana tabacum, were studied during prolonged cultivation under conditions of drought, salinity, and low positive temperatures. Increased expression of expansin genes led to an increase in the growth rate and root length both under normal plant growth conditions and at 12°C and 50 mM NaCl. Increased expression of expansin genes influenced the changes in the fresh and dry mass of a shoot, leading to an increase in their exposure to hypothermia. Transgenic plants with a reduced level of NtEXPA4 expansin gene expression were characterized by a reduction in the fresh and dry weight of a shoot due to drought and low positive temperatures. The totality of the data obtained may indicate the involvement of NtEXPA1, NtEXPA4, and NtEXPA5 tobacco expansin genes in the regulation of growth under hypothermia, drought, and salinity.  相似文献   

7.
The main goal of this research was to quantify the concentrations of total and ammonium N, nitrate, total and soluble P in the water in the presence of Eichhornia crassipes and Salvinia auriculata, which were submitted to two different photoperiods in a 24 hours incubation period in the laboratory. The macrophytes were incubated in plastic vials of approximately 1.5 litters, with a previously prepared solution with NH4NO3, NH4Cl, and KH2PO4. Eichhornia crassipes showed the highest average rate of reduction of all the nutrients analysed in relation to Salvinia auriculata. The largest photoperiod reflected in a higher average rate of reduction of nutrients, in both plants. Therefore, we may expect that in some periods of the year (e.g. summer), the aquatic macrophytes would show higher growth rates and higher rates of nitrogen and phosphorus absorption. These results are important for the implementation and management of wastewater treatment systems in tropical areas using aquatic macrophytes.  相似文献   

8.
Rising temperatures likely affect the trophic interactions in temperate regions as global warming progresses. An open question is how a temperature rise may affect consumer pressure and plant abundance in shallow aquatic ecosystems, where most consumers are omnivorous. Interestingly, herbivory (plant-eating) is more prevalent toward low latitudes in ectotherms such as fish and aquatic invertebrates, and this may be temperature driven. We used pond snails (Lymnaea stagnalis L.) as a model aquatic ectotherm species and tested their consumption of both animal prey (Gammarus pulex L.) and plant material (Potamogeton lucens L.) at three different temperatures (15, 20, and 25°C). Higher temperatures led to higher consumption rates by the omnivore on both plant food and animal prey when fed separately. When the food was offered simultaneously, the pond snails consistently preferred animal prey over plant material at all tested temperatures. However, the omnivore did consume plant material even though they had enough animal prey available to them. Based on our experiments, we conclude that with increasing temperatures, L. stagnalis will only increase their consumption rates but not change food preference. Further studies are needed to test the generality of our findings across aquatic species to predict the effect of warming on aquatic plant consumption.  相似文献   

9.
The emergent aquatic plant, Sagittaria cuneata, is an easily-identified and commonly-found species in the Great Plains region of North America and has the potential to be a bioindicator of nitrogen (N) and phosphorus (P) because of its previously-identified leaf plasticity in response to nutrient conditions. To identify associations between leaf morphology and soil and water nutrients, we conducted: (1) a 10-week controlled experiment in which plants were grown in nutrient-enriched sediment, nutrient-enriched water, or unamended control trials, and (2) a field study where emergent leaves were collected from 15 streams of varying nutrient concentrations. Plants grown in experimentally enriched sediment were more productive than those grown in enriched water or control conditions: they produced more emergent leaves and tubers, had a larger final biomass and height, and developed emergent leaves that showed a consistent increase in size and unique change in shape over time. Emergent leaves collected from field plants also showed significant variability of leaf traits; however, this variability occurred at all scales of replication (leaf, plant, quadrat, and site), with linear mixed effects modelling indicating that random chance was likely driving this variability. Although sediment nutrients were crucial to successful growth of S. cuneata under controlled conditions, the high variability in leaf morphology under field conditions (likely due to large natural variability at the species, population, and individual scale) make leaf plasticity of S. cuneata unsuitable as a bioindicator. Our results emphasize the need to quantify within and among plant variation in leaf morphology (and to clarify sampling methods) for the many taxa of aquatic macrophytes that are phenotypically plastic and notoriously difficult to classify.  相似文献   

10.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

11.
In marly catchments of the French Southern Alps, soils are subjected to harsh water erosion that can result in concentrated flows uprooting small plants. Evaluating and predicting plant resistance to uprooting from simple plant traits is therefore highly important so that the most efficient plant strategy for future restoration of eroded slopes can be defined. Twelve species growing on marly land were studied. For each species, in-situ lateral uprooting tests were conducted and morphological plant traits were measured on small plants at the early stages of their development. The results show that maximum uprooting force was most positively correlated with stem basal diameter. Resistance to uprooting depends on a combination of several traits. Tap root length, the proportion of fine lateral roots and root topology were the best predictors of anchorage strength.  相似文献   

12.
The effects of mild osmotic stress conditions on aquaporin-mediated water transport are not well understood. In the present study, mild osmotic stress treatments with 20 and 50 g L?1 polyethylene glycol 6000 (PEG) in Hoagland’s mineral solution were applied for 3 weeks under controlled environmental conditions to transgenic Populus tremula × Populus alba plants constitutively over-expressing a Populus PIP2;5 aquaporin and compared with the wild-type plants. The PEG treatments resulted in growth reductions and triggered changes in net photosynthesis, transpiration, stomatal conductance and root hydraulic conductivity in the wild-type plants. However, height growth, leaf area, gas exchange, and root hydraulic conductivity were less affected by the PEG treatments in PIP2;5-over-expressing poplar lines. These results suggest that water transport across the PIP2;5 aquaporin is an important process contributing to tolerance of mild osmotic stress in poplar. Greater membrane abundance of PIP2;5 was most likely the factor that was responsible for higher root hydraulic conductivity leading to improved plant water flux and, consequently, greater gas exchange and growth rates under mild osmotic stress conditions. The results also provide evidence for the functional significance of PIP2;5 aquaporin in water transport and its strong link to growth processes in poplar.  相似文献   

13.
Competition and allelopathy in aquatic plant communities   总被引:2,自引:0,他引:2  
The paper reviews the published literature on the studies of competition and allelopathy in aquatic plant communities. Taking a broader view of the community, the studies on interactions between macrophytes and microphytes, macrophytes and macro-invertebrates and microbial communities are also reviewed. The role of these interactions in the structure and dynamics of aquatic communities has been discussed in light of the current hypotheses concerning competition in terrestrial communities. The available information suggests that the aquatic plants of various growth forms differ greatly among themselves in their responses and adaptations to competition and allelopathy. The possible application of these interactions in biological control of plant pests and in agriculture is also summarized. We conclude that the observed differences in these interactions between the terrestrial and aquatic environment are due to the effects of water as a non-resource variable as well as due to special adaptive characteristics of aquatic plants. Further we hypothesize that the aquatic plants adopt both competitive and allelopathic strategies under different conditions and in interactions with different plants. The review highlights that our knowledge of both competition and allelopathy among aquatic plant communities is inadequate and fragmentary, and therefore, both extensive and intensive studies are required.  相似文献   

14.
Myriophyllum aquaticum is a semi-submerged exotic macrophyte that was introduced to China for many years. This species may be found in an emergent form in aquatic environments or in an amphibious form under drained conditions. Nuisance growth of this species has often been attributed to excessive amounts of nutrients. Therefore, we tested the following hypotheses: (1) high nutrient availability facilitates the establishment of M. aquaticum and (2) fragment type interacts with nutrient availability to determine the colonization and regeneration capacities of M. aquaticum. Two types of fragments were grown in water solutions with two levels of phosphorous. After 3 weeks, the survival rates showed no significant difference between the phosphorous treatments. However, emergent fragments showed higher RGR in the low and high phosphorous treatments than amphibious fragments. In addition, emergent fragments also showed higher regeneration capacities, indicating higher invasiveness in emergent fragments compared to amphibious fragments. Moreover, the high phosphorous concentration caused emergent fragments to produce more branches, indicating that nutrient availability may increase M. aquaticum propagule pressure. Our study highlights that nutrient supply increased emergent fragment establishment and shaped the invasion dynamics of macrophytes, which could help predict the spread and potential impact of exotic macrophytes in natural aquatic ecosystems.  相似文献   

15.
Flooding regimes are a primary influence on the wetland plant community. Human-induced disturbance often changes the duration and frequency of flooding in wetlands, and has a marked influence on wetland plant composition and viability. Comprehensive studies of the environmental thresholds of wetland plants are required for the development of proper practices for wetland management and restoration after hydrological disturbance. This study provides a quantitative assessment of the establishment, growth, and community shifts in dominance of three emergent plant species (Scirpus tabernaemontani, Typha orientalis, and Zizania latifolia) typical of South Korean wetlands, under five hydrological regimes (waterlogged, low-level standing water, high-level standing water, intensive periodic flooding, and intermittent flooding) over four growing seasons. A mesocosm experiment was conducted in the campus of Seoul National University, South Korea. The number and biomass of shoots of Z. latifolia responded positively to increased water level and flooding frequency, while that of the other plants did not. Zizania latifolia outcompeted S. tabernaemontani and T. orientalis irrespective of hydrological regime. This study suggests that Z. latifolia can outcompete the other two macrophytes in the field. This study will improve our ability to predict the dynamics of wetland vegetation and so facilitate the formulation of wetland management and restoration strategies.  相似文献   

16.
Plants grown in phosphorus-deprived solutions often exhibit disruption of water transport due to reduction in root hydraulic conductivity (Lpr). To uncover the relationship between root Lpr and water permeability coefficient (Pf) of plasma membrane and the role of aquaporins, we evaluated Pf of plasma membrane and also PIP-type aquaporin gene expression in tobacco (Nicotiana tabacum L.) plant roots after seven days P-deprivation. The results showed significant reduction in sap flow rate (Jv) and osmotic root hydraulic conductivity (Lpr-o) in P-deprived roots. These effects were reversed 24 h after P-resupplying. Interestingly, the Pf of root protoplasts was 57% lower in P-deprived plants compared with P-sufficient ones. The expression of NtPIP1;1 and NtPIP2;1 aquaporins did not change significantly in P-deprived plants compared with P-sufficient ones, but the copy number of NtAQP1 increased significantly in P-deprived plants. P-deprivation did not change Lpr-o significantly in antisense NtAQP1 plants. Taken together, these findings suggest that P-deprivation may play an important role in modulation of root hydraulic conductivity by affecting Pf in transcellular pathway of water flow across roots and aquaporins. Finally, we concluded that dominant water transport pathway under P-deprivation was transcellular one.  相似文献   

17.
水生高等植物对废水中银的净化与富集特性研究   总被引:26,自引:0,他引:26  
戴全裕  戴文宁  高翔  卢红 《生态学报》1990,10(4):343-348
  相似文献   

18.
19.
Pythium species are economically significant soilborne plant pathogens with worldwide distribution, causing seedling damping-off or root rot diseases. Pythium phragmitis is a newly described pathogen of common reed (Phragmites australis), widespread in the reed-belt of Lake Constance, Germany. It is highly aggressive towards reed leaves and seedlings, but obviously does not affect roots. In the context of ‘reed decline’ phenomena, P. phragmitis infection of reed inundated during flooding events may be of particular significance. We could show that flooding itself is not necessarily detrimental for reed plants. In the presence of the pathogen, however, most submerged leaves and plants were killed within several weeks. Clipped plants did not show regrowth in the Pythium infested treatments. Significant losses in assimilating leaf area of reeds could, thus, be the result of Pythium infection rather than of flooding alone. Therefore, we suggest that the combination of extended flooding and the presence of P. phragmitis might considerably contribute to ‘reed decline’ at Lake Constance. In parallel, we could show that pathogenicity and spread of this species are considerably favoured by rising temperatures. Since an increase in average water temperature has been found for Lake Constance, we propose that P. phragmitis could be an important factor in the dieback of reed stands likely to be promoted by predicted climate change phenomena.  相似文献   

20.
Iron sulfide plaques have been observed on roots of wild rice (Zizania palustris) and other wetland plants grown in sulfur-impacted freshwater ecosystems, but the mechanism of their formation and ramifications for plants have not been investigated. We exposed a model annual wetland plant, Zizania palustris, to elevated sulfate concentrations (3.1 mM) and quantified the development of iron oxide and iron sulfide precipitates on root surfaces throughout the plant life cycle. During the onset of seed production, root surfaces amended with sulfate transitioned within 1 week from iron (hydr)oxide plaques to iron sulfide plaques. During the same week, Fe(III) decreased on roots of plants not amended with sulfate but FeS did not accumulate. Prior to FeS accumulation, sulfate-amended plants had taken up the same amount of N as unamended plants. After FeS accumulation, total plant nitrogen did not increase further on sulfate-amended plants, indicating a cessation in nitrogen uptake, whereas total plant N continued to increase in unamended plants. Sulfate-amended plants produced fewer and lighter seeds with less nitrogen than unamended plants. FeS precipitation on roots may be associated with elevated sulfide and inhibited nitrogen uptake before the end of the plant’s life cycle, thus affecting the populations of this annual aquatic plant. We propose a mechanism by which a physiologically-induced decline in radial oxygen loss near the end of a plant’s life cycle initiates a precipitous decline in redox potential at the root surface and in adjacent porewater, initiating accumulation of iron sulfide plaques. These plaques could be an important locus for iron sulfide accumulation in wetland sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号