Purpose
The purpose of the study was to outline and demonstrate a new geographic information system (GIS)-based approach for utilising spatial geological data in three dimensions (i.e. length, width and depth) to improve estimates on earthworks during early stages of road infrastructure planning.Methods
This was undertaken by using three main methodological steps: mass balance calculation, life cycle inventory analysis and spatial mapping of greenhouse gas (GHG) emissions and energy use. The mass balance calculation was undertaken in a GIS environment using two assumptions of geological stratigraphy for two proposed alternative road corridors in Sweden. The estimated volumes of excavated soil, blasted rock and filling material were later multiplied with the GHG emission and energy use factors for these processes, to create spatial data and maps in order to show potential impacts of the studied road corridors. The proposed GIS-based approach was evaluated by comparing with actual values received after one alternative was constructed.Results and discussion
The results showed that the estimate of filling material was the most accurate (about 9 % deviation from actual values), while the estimate for excavated soil and blasted rock resulted in about 38 and 80 % deviation, respectively, from the actual values. It was also found that the total volume of excavated and ripped soils did not change when accounting for stratigraphy.Conclusions
The conclusion of this study was that more information regarding embankment height and actual soil thickness would further improve the model, but the proposed GIS-based approach shows promising results for usage in LCA at an early stage of road infrastructure planning. Thus, by providing better data quality, GIS in combination with LCA can enable planning for a more sustainable transport infrastructure.Purpose
The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and economic burden in future construction projects.Methods
The study consists of the life cycle assessment and life cycle costing of lodging in three building types: traditional, semi-modern and modern. The life cycle stages under analysis include raw material acquisition, manufacturing, construction, use, maintenance and material replacement. The study includes a sensitivity analysis focusing on the lifespan of buildings, occupancy rate and discount and inflation rates. The functional unit was formulated as the ‘Lodging of one additional guest per night’, and the time horizon is 50 years of building lifespan. Both primary and secondary data were used in the life cycle inventory.Results and discussion
The modern building has the highest global warming potential (kg CO2-eq) as well as higher costs over 50 years of building lifespan. The results show that the use stage is responsible for the largest share of environmental impacts and costs, which are related to energy use for different household activities. The use of commercial materials in the modern building, which have to be transported mostly from the capital in the buildings, makes the higher GWP in the construction and replacement stages. Furthermore, a breakdown of the building components shows that the roof and wall of the building are the largest contributors to the production-related environmental impact.Conclusions
The findings suggest that the main improvement opportunities in the lodging sector lie in the reduction of impacts on the use stage and in the choice of materials for wall and roof.Winter road maintenance in the Nordic climate is demanding due to challenging weather conditions, high precipitation, and icy conditions. As a leading country in the transition to low-emission transport, Norway must work to reduce their emissions while providing a safe level of service through winter maintenance operations. This article investigates the environmental impacts of winter road maintenance (WRM) in Norway both today and under a climate change scenario predicted for 2050.
MethodsLife cycle assessment (LCA) is used to evaluate the environmental impact of the functional unit “average winter road maintenance in Norway on national and county roads per km.lane.” The ReCiPe (hierarchy) method was used to identify and categorize emissions related to WRM to show how different factors affect the system and to reveal hidden emissions hotspots. Real-time data from WRM vehicles were used to determine how fuel consumption is affected by gradient and weather. Producers and operators provided other relevant information on WRM vehicles. Official reports supplied information on deicer quantities used and the total distance driven by WRM vehicles in Norway.
Results and discussionThe quantity of deicer used is the main source of emissions contributing toward all impact categories. The effect of deicer is likely to be even higher in certain impact categories. The environmental impact of the deicer after application is not included. The representation of WRM in existing emissions data is limited despite the considerable amount of deicer applied and the long distances that WRM vehicles travel. The results document how energy use throughout the system is another important source of emissions. Various parameters, such as road gradient, vehicle properties, driver behavior, and weather, affect the fuel consumption of WRM vehicles, with weather being the most important of these.
ConclusionsSignificant potential for emissions reductions from WRM was found, and WRM operations should be included in cold-climate road LCA studies. The environmental impacts of deicer application are especially high compared to the mechanical clearing of roads and contribute strongly to impact categories such as terrestrial, freshwater, and human toxicity and to the formation of particulate matter.
相似文献Purpose
Service life of building products has an important influence on life cycle assessment (LCA) results of buildings. The goal of this study was to propose a systematic approach to estimate service life of building products by including both technical and social factors. 相似文献Purpose
The oft-cited waste hierarchy is considered an important rule of thumb to identify preferential waste management options and places waste prevention at the top. Nevertheless, it has been claimed that waste prevention can sometimes be less favorable than recycling because (1) recycling decreases only the primary production of materials, whereas waste prevention may reduce a combination of both primary and low-impact secondary production, and (2) waste prevention decreases the quantity of material recycled downstream and the avoided impacts associated with recycling. In response to this claim, this study evaluates the life cycle effects of waste prevention activities (WPAs) on a residential waste management system.Methods
This life cycle assessment (LCA) contrasts the net impacts of a large residential solid waste management system (including sanitary landfilling, anaerobic digestion, composting, and recycling) with a system that incorporates five WPAs, implemented at plausible levels (preventing a total of 3.6 % of waste generation tonnage) without diminishing product service consumption. WPAs addressed in this LCA reduce the collected tonnage of addressed advertising mail, disposable plastic shopping bags, newspapers, wine and spirit packaging, and yard waste (grass).Results and discussion
In all cases, the WPAs reduce the net midpoint and endpoint level impacts of the residential waste management system. If WPAs are incorporated, the lower impacts from waste collection, transportation, sorting, and disposal as well as from the avoided upstream production of goods, more than compensate for the diminished net benefits associated with recycling and the displaced electricity from landfill gas utilization.Conclusions
The results substantiate the uppermost placement of waste prevention within the waste hierarchy. Moreover, further environmental benefits from waste prevention can be realized by targeting WPAs at goods that will be landfilled and at those with low recycled content. 相似文献Purpose
Life cycle costing (LCC) is a state-of-the-art method to analyze investment decisions in infrastructure projects. However, uncertainties inherent in long-term planning question the credibility of LCC results. Previous research has not systematically linked sources and methods to address this uncertainty. Part I of this series develops a framework to collect and categorize different sources of uncertainty and addressing methods. This systematization is a prerequisite to further analyze the suitability of methods and levels the playing field for part II.Methods
Past reviews have dealt with selected issues of uncertainty in LCC. However, none has systematically collected uncertainties and linked methods to address them. No comprehensive categorization has been published to date. Part I addresses these two research gaps by conducting a systematic literature review. In a rigorous four-step approach, we first scrutinized major databases. Second, we performed a practical and methodological screening to identify in total 115 relevant publications, mostly case studies. Third, we applied content analysis using MAXQDA. Fourth, we illustrated results and concluded upon the research gaps.Results and discussion
We identified 33 sources of uncertainty and 24 addressing methods. Sources of uncertainties were categorized according to (i) its origin, i.e., parameter, model, and scenario uncertainty and (ii) the nature of uncertainty, i.e., aleatoric or epistemic uncertainty. The methods to address uncertainties were classified into deterministic, probabilistic, possibilistic, and other methods. With regard to sources of uncertainties, lack of data and data quality was analyzed most often. Most uncertainties having been discussed were located in the use stage. With regard to methods, sensitivity analyses were applied most widely, while more complex methods such as Bayesian models were used less frequently. Data availability and the individual expertise of LCC practitioner foremost influence the selection of methods.Conclusions
This article complements existing research by providing a thorough systematization of uncertainties in LCC. However, an unambiguous categorization of uncertainties is difficult and overlapping occurs. Such a systemizing approach is nevertheless necessary for further analyses and levels the playing field for readers not yet familiar with the topic. Part I concludes the following: First, an investigation about which methods are best suited to address a certain type of uncertainty is still outstanding. Second, an analysis of types of uncertainty that have been insufficiently addressed in previous LCC cases is still missing. Part II will focus on these research gaps.Purpose
Life cycle assessment (LCA) is a tool that can be utilized to holistically evaluate novel trends in the construction industry and the associated environmental impacts. Green labels are awarded by several organizations based on single or multiple attributes. The use of multi-criteria labels is a good start to the labeling process as opposed to single criteria labels that ignore a majority of impacts from products. Life cycle thinking, in theory, has the potential to improve the environmental impacts of labeling systems. However, LCA databases currently are lacking in detailed information about products or sometimes provide conflicting information.Method
This study compares generic and green-labeled carpets, paints, and linoleum flooring using the Building for Environmental and Economic Sustainability (BEES) LCA database. The results from these comparisons are not intuitive and are contradictory in several impact categories with respect to the greenness of the product. Other data sources such as environmental product declarations and ecoinvent are also compared with the BEES data to compare the results and display the disparity in the databases.Results
This study shows that partial LCAs focused on the production and transportation phase help in identifying improvements in the product itself and improving the manufacturing process but the results are uncertain and dependent upon the source or database. Inconsistencies in the data and missing categories add to the ambiguity in LCA results.Conclusions
While life cycle thinking in concept can improve the green labeling systems available, LCA data is lacking. Therefore, LCA data and tools need to improve to support and enable market trends. 相似文献Organizational life cycle assessment (O-LCA) is an emerging method to analyze the inputs, outputs, and environmental impacts of an organization throughout its value chain. To facilitate the method’s application, the Guidance on Organizational Life Cycle Assessment was published within the UNEP/SETAC Life Cycle Initiative and applied by 12 “road-testing” organizations. In this paper, different aspects of the road testers’ studies are displayed and analyzed according to the feedback of the road testers.
MethodsAn anonymous survey about the method application was conducted among the road testers. The analysis assessed, among others: (i) which goals the organizations initially pursued and their achievement; (ii) how previous experience with environmental tools contributed to the study design; (iii) which methodological options were chosen (like the scope of the study, data collection approaches, impact assessment methods and tools, and data sources); and (iv) which methodological challenges were faced.
Results and discussionThe survey showed that analytical goals were of priority for most road testers and obtained a higher achievement level than managerial and societal goals for which either long-term measures or the inclusion of stakeholders are needed. Previous experience with product- or organization-related tools considering the whole life cycle proves useful due to available data and/or organizational models. The categorization of organizational activities, data collection, data quality assessment, and interpretation proved being the most challenging methodological elements. In addition, three cross-cutting issues of method application were identified: aligning the O-LCA study to previous environmental activities, designing the study, and availability of personnel and software resources.
ConclusionsThe road-testing organizations verified the applicability and usefulness of the O-LCA Guidance and significantly widened the pool of case studies available. On the other hand, additional guidance for methodological challenges particular of the organizational level, the availability of software tools able to support O-LCA application, region-specific LCI databases, and a broadly recognized data quality assessment scheme would facilitate conducting O-LCA case studies.
相似文献The main objective of this paper is to develop a model that will combine economic and environmental assessment tools to support the composite material selection of aircraft structures in the early phases of design and application of the tool for an aircraft elevator.
MethodsAn integrated life cycle cost (LCC) and life cycle assessment (LCA) methodology was used as part of the sustainable design approach for the laminate stacking sequence design. The model considered is the aircraft structure made of carbon fiber reinforce plastic prepreg and processed via hand layup-autoclave process which is the preferred method for the aircraft industry. The model was applied to a cargo aircraft elevator case study by comparing six different laminate configurations and two different carbon fiber prepreg materials across aircraft’s entire life cycle.
Results and discussionThe results show, in line with other studies using different methodologies (e.g., life cycle engineering, or LCE), that the combination of LCA with LCC is a worthwhile approach for comparing the different laminate configurations in terms of cost and environmental impact to support composite laminate stacking design by providing the best trade-off between cost and environment. Elevator LCC reduces 19% by changing the material type and applying different ply orientations. Elevator LCA score reduces 53% by selecting the optimum instead of best technical solution that minimizes the displacement. Improving the structural performance does not always lead to an increase in the cost.
相似文献