首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

2.

Purpose

This study presents a life cycle assessment (LCA)-based sustainable and lightweight automotive engine hood design and compares the life cycle energy consumption and potential environmental impacts of a steel (baseline) automotive engine hood with three types of lightweight design: advanced high strength steel (AHSS), aluminum, and carbon fiber.

Methods

A “cradle-to-grave” LCA including the production, use, and end-of-life stages is conducted in accordance with the ISO 14040/14044 standards. Onsite data collected by Chinese automotive companies in 2015 are used in the assessment. The Cumulative Energy Demand v1.09 method is applied to evaluate cumulative energy demand (CED), and the International Panel on Climate Change 2013 100a method is used to estimate global warming potential (GWP 100a).

Results and discussion

Among the different lightweight designs for the engine hood, the aluminum design is the most sustainable and has the lowest CED and GWP (100a) from a life cycle perspective, which is based on a lifetime driving distance of approximately 150,000 km. In addition, the AHSS design is also sustainable and lightweight. The carbon fiber design results in higher CED and GWP (100a) values than the steel (baseline) design during the life cycle but results in the largest CED and GWP (100a) savings through waste material recycling. The AHSS design exhibits the best break-even distance based on CED and GWP (100a) within 150,000 km.

Conclusions

Sensitivity analysis results show that the lifetime driving distance and material recycling rate have the largest impacts on the overall CEDs and GWPs of the three lightweight designs.
  相似文献   

3.

Purpose

The fifth assessment report by the IPCC includes methane oxidation as an additional indirect effect in the global warming potential (GWP) and global temperature potential (GTP) values for methane. An analysis of the figures provided by the IPCC reveals they lead to different outcomes measured in CO2-eq., depending on whether or not biogenic CO2 emissions are considered neutral. In this article, we discuss this inconsistency and propose a correction.

Methods

We propose a simple framework to account for methane oxidation in GWP and GTP in a way that is independent on the accounting rules for biogenic carbon. An equation with three components is provided to calculate metric values, and its application is tested, together with the original IPCC figures, in a hypothetical example focusing on GWP100.

Results and discussion

The hypothetical example shows that the only set of GWP100 values consistently leading to the same outcome, regardless of how we account for biogenic carbon, is the one proposed in this article. Using the methane GWP100 values from the IPCC report results in conflicting net GHG emissions, thus pointing to an inconsistency.

Conclusions

In order to consistently discriminate between biogenic and fossil methane sources, a difference of 2.75 kg CO2-eq. is needed, which corresponds to the ratio of the molecular weights of CO2 and methane (44/16). We propose to correct the GWP and GTP values for methane accordingly.
  相似文献   

4.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

5.

Background

Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding.

Aim of Review

We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality.

Key Scientific Concepts of Review

Translational metabolomics applied to crop breeding programs.
  相似文献   

6.

Background, aim and scope

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.

Material and methods

A full life cycle assessment with regards to greenhouse gas emissions and savings has been carried out for different aluminium applications in cars as compared to the same applications in steel or cast iron. The case studies reference real cases, where aluminium is actually used in series production. The studies are based on a greenhouse gas lifecycle model, which has been developed following the ISO standard 14040 framework. For each component, sensitivity analysis is applied to determine the impact of lifetime driving distance, driving characteristics (impact of air friction) and recycling rate.

Results

Life cycle results show that in automotive applications, each kilogram of aluminium replacing mild steel, cast iron or high strength steel saves, depending on the specific case (bumper and motor block of a compact car, front hood of a large family car, body-in white of a luxury car), between 13 and 20 kg of greenhouse gas emissions.

Discussion

The performed sensitivity analysis finds that even with ‘worst case’ scenarios savings are still significant.

Conclusions

The results not only demonstrate significant benefits of aluminium with regard to greenhouse gas savings but also show that these are very sensitive to variations of the recycling rate, the life-time driving distance and the driving behaviour.

Recommendations and perspectives

Good care is needed to gather life-cycle data and to make informed estimates, where no data are available. Furthermore, greenhouse gas savings for additional components should be calculated using this life cycle model to sustain the findings.
  相似文献   

7.

Purpose

The improper handling of industrial hazardous waste (IHW), which comprises large amounts of toxic chemicals, heavy metals, or irradiation substances, is a considerable threat to human health and the environment. This study aims to quantify the life cycle environmental impacts of IHW landfilling and incineration in China, to identify its key factors, to improve its potential effects, and to establish a hazardous waste disposal inventory.

Methods

Life cycle assessment was conducted using the ReCiPe model to estimate the environmental impact of IHW landfilling and incineration. The characterization factors for the human toxicity and freshwater ecotoxicity categories shown in the ReCiPe were updated based on the geographies, population, food intake, and environmental conditions in China.

Results and discussion

The overall environmental burden was mainly attributed to the carcinogen category. The national carcinogen burden in 2014 at 37.8 CTUh was dominated by diesel consumption, cement and sodium hydroxide production, direct emission, transportation, and electricity generation stages caused by direct mercury and arsenic emissions, as well as indirect chromium emission. Although the atmospheric mercury emission directly caused by IHW incineration was comparative with the emission levels of developed countries, the annual direct mercury emission accounted for approximately 0.1% of the national mercury emission.

Conclusions

The key factors contributing to the reduction of the national environmental burden include the increasing diesel and electricity consumption efficiency, the reduction of cement and sodium hydroxide use, the development of air pollutant controlling systems, the reduction of transport distance between IHW disposers to suppliers, and the improvement of IHW recycling and reuse technologies.
  相似文献   

8.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

9.
10.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

11.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

12.

Aims

Plants interact by modifying soil conditions in plant-soil feedback processes. Foliar endophytes of grasses exert multiple effects on host rhizosphere with potential consequences on plant-soil feedback. Here, we hypothesize that the grass-endophyte symbiosis impairs soil symbiotic potential, and in turn influences legume performance and nitrogen acquisition.

Methods

Soil was conditioned in pots, growing Lolium multiflorum with or without the fungal endophyte Epichloë and with or without arbuscular mycorrhizal fungi (AMF). Then, Trifolium repens grew in all types of conditioned soils with high or low rhizobia availability.

Results

Endophyte soil conditioning reduced AMF spores number and rhizobial nodules (?27 % and ?38 %, respectively). Seedling survival was lower in endophyte-conditioned soil and higher in mycorrhizal soils (?27 % and +24 %, respectively). High rhizobia-availability allowed greater growth and nitrogen acquisition, independent of soil conditioning. Low rhizobia-availability allowed both effects only in endophyte-conditioned soil.

Conclusion

Endophyte-induced changes in soil (i) hindered symbiotic potential by reducing AMF spore availability or rhizobia nodulation, (ii) impaired legume survival irrespective of belowground symbionts presence, but (iii) mimicked rhizobia effects, enhancing growth and nitrogen fixation in poorly nodulated plants. Our results show that shoot and root symbionts can be interactively involved in interspecific plant-soil feedback.
  相似文献   

13.

Purpose

Liquefied natural gas (LNG) is expected to become an important component of the UK’s energy supply because the national hydrocarbon reserves on the continental shelf have started diminishing. However, use of any carbon-based fuel runs counter to mitigation of greenhouse gas emissions (GHGs). Hence, a broad environmental assessment to analyse the import of LNG to the UK is required.

Methods

A cradle to gate life cycle assessment has been carried out of a specific but representative case: LNG imported to the UK from Qatar. The analysis covers the supply chain, from gas extraction through to distribution to the end-user, assuming state-of-the-art facilities and ships. A sensitivity analysis was also conducted on key parameters including the energy requirements of the liquefaction and vaporisation processes, fuel for propulsion, shipping distance, tanker volume and composition of raw gas.

Results and discussion

All environmental indicators of the CML methodology were analysed. The processes of liquefaction, LNG transport and evaporation determine more than 50% of the cradle to gate global warming potential (GWP). When 1% of the total gas delivered is vented as methane emissions leakage throughout the supply chain, the GWP increases by 15% compared to the GWP of the base scenario. The variation of the GWP increases to 78% compared to the base scenario when 5% of the delivered gas is considered to be lost as vented emissions. For all the scenarios analysed, more than 75% of the total acidification potential (AP) is due to the sweetening of the natural gas before liquefaction. Direct emissions from transport always determine between 25 and 49% of the total eutrophication potential (EP) whereas the operation and maintenance of the sending ports strongly influences the fresh water aquatic ecotoxicity potential (FAETP).

Conclusions

The study highlights long-distance transport of LNG and natural gas processing, including sweetening, liquefaction and vaporisation, as the key operations that strongly affect the life cycle impacts. Those cannot be considered negligible when the environmental burdens of the LNG supply chain are considered. Furthermore, the effect of possible fugitive methane emissions along the supply chain are critical for the impact of operations such as extraction, liquefaction, storage before transport, transport itself and evaporation.
  相似文献   

14.

Objectives

To develop a more effective dissolved air flotation process for harvesting microalgae biomass, a co-flocculation/air flotation (CAF) system was developed that uses an ejector followed by a helix tube flocculation reactor (HTFR) as a co-flocculation device to harvest Chlorella sp. 64.01.

Results

The optimal size distribution of micro-bubbles and an air release efficiency of 96 % were obtained when the flow ratio of inlet fluid (raw water) to motive fluid (saturated water) of the ejector was 0.14. With a reaction time of 24 s in the HTFR, microalgae cells and micro-bubbles were well flocculated, and these aerated flocs caused a fast rising velocity (96 m/h) and high harvesting efficiency (94 %).

Conclusions

In a CAF process, micro-bubbles can be encapsulated into microalgae flocs, which makes aerated flocs more stable. CAF is an effective approach to harvesting microalgae.
  相似文献   

15.

Background

Pseudomyxoma peritonei is a rare condition consisting of mucinous ascites, most commonly arising from mucinous tumors of the appendix and occasionally from the ovary. Very rarely mucinous implants arise in the retroperitoneum without any intra-peritoneal involvement. This has been termed as pseudomyxoma extraperitonei.

Case presentation

We report a case of a 57 year old man who developed pseudomyxoma extraperitonei, 35 years after undergoing an appendicectomy for a perforated appendix.

Conclusions

Pseudomyxoma extraperitonei has been previously reported, however we report the longest incubation period of 35 years for this condition.
  相似文献   

16.

Objectives

To develop and validate a microdilution method for measuring the minimum inhibitory concentration (MIC) of biosurfactants.

Results

A standardized microdilution method including resazurin dye has been developed for measuring the MIC of biosurfactants and its validity was established through the replication of tetracycline and gentamicin MIC determination with standard bacterial strains.

Conclusion

This new method allows the generation of accurate MIC measurements, whilst overcoming critical issues related to colour and solubility which may interfere with growth measurements for many types of biosurfactant extracts.
  相似文献   

17.

Background

The protein encoded by the gene ybgI was chosen as a target for a structural genomics project emphasizing the relation of protein structure to function.

Results

The structure of the ybgI protein is a toroid composed of six polypeptide chains forming a trimer of dimers. Each polypeptide chain binds two metal ions on the inside of the toroid.

Conclusion

The toroidal structure is comparable to that of some proteins that are involved in DNA metabolism. The di-nuclear metal site could imply that the specific function of this protein is as a hydrolase-oxidase enzyme.
  相似文献   

18.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

19.

Purpose

To evaluate the efficiency of corneal collagen cross-linking (CXL) in addition to topical voriconazole in cases with mycotic keratitis.

Design

Retrospective case series in a tertiary university hospital.

Participants

CXL was performed on 13 patients with mycotic keratitis who presented poor or no response to topical voriconazole treatment.

Methods

The clinical features, symptoms, treatment results and complications were recorded retrospectively. The corneal infection was graded according to the depth of infection into the stroma (from grade 1 to grade 3). The visual analogue scale was used to calculate the pain score before and 2 days after surgery.

Main Outcome Measures

Grade of the corneal infection.

Results

Mean age of 13 patients (6 female and 7 male) was 42.4 ± 17.7 years (20–74 years). Fungus was demonstrated in culture (eight patients) or cytological examination (five patients). Seven of the 13 patients (54%) were healed with topical voriconazole and CXL adjuvant treatment in 26 ± 10 days (15–40 days). The remaining six patients did not respond to CXL treatment; they initially presented with higher grade ulcers. Pre- and post-operative pain score values were 8 ± 0.8 and 3.5 ± 1, respectively (p < 0.05).

Conclusions

The current study suggests that adjunctive CXL treatment is effective in patients with small and superficial mycotic ulcers. These observations require further research by large randomized clinical trials.
  相似文献   

20.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号