首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The purpose of this study was to analyze the environmental trade-offs of cascading reuse of electric vehicle (EV) lithium-ion batteries (LIBs) in stationary energy storage at automotive end-of-life.

Methods

Two systems were jointly analyzed to address the consideration of stakeholder groups corresponding to both first (EV) and second life (stationary energy storage) battery applications. The environmental feasibility criterion was defined by an equivalent-functionality lead-acid (PbA) battery. A critical methodological challenge addressed was the allocation of environmental impacts associated with producing LIBs across the EV and stationary use systems. The model also tested sensitivity to parameters such as the fraction of battery cells viable for reuse, service life of refurbished cells, and PbA battery efficiency.

Results and discussion

From the perspective of EV applications, cascading reuse of an LIB in stationary energy storage can reduce net cumulative energy demand and global warming potential by 15 % under conservative estimates and by as much as 70 % in ideal refurbishment and reuse conditions. When post-EV LIB cells were compared directly to a new PbA system for stationary energy storage, the reused cells generally had lower environmental impacts, except in scenarios where very few of the initial battery cells and modules could be reused and where reliability was low (e.g., life span of 1 year or less) in the secondary application.

Conclusions

These findings demonstrate that EV LIB reuse in stationary application has the potential for dual benefit—both from the perspective of offsetting initial manufacturing impacts by extending battery life span as well as avoiding production and use of a less-efficient PbA system. It is concluded that reuse decisions and diversion of EV LIBs toward suitable stationary applications can be based on life cycle centric studies. However, technical feasibility of these systems must still be evaluated, particularly with respect to the ability to rapidly analyze the reliability of EV LIB cells, modules, or packs for refurbishment and reuse in secondary applications.
  相似文献   

2.

Purpose

Nowadays, the electric vehicle is one of the most promising alternatives for sustainable transportation. However, the battery, which is one of the most important components, is the main contributor to environmental impact and faces recycling issues. In order to reduce the carbon footprint and to minimize the overall recycling processes, this paper introduces the concept of re-use of electric vehicle batteries, analyzing some possible second-life applications.

Methods

First, the boundaries of the life cycle assessment of an electric vehicle are defined, considering the use of the battery in a second-life application. To perform the study, we present eight different scenarios for the second-life application. For each case, the energy, the efficiency, and the lifetime of the battery are calculated. Additionally, and based on the global warming potential, the environmental impact of the electric vehicle and its battery on a second-life application is determined for each scenario. Finally, an environmentally focused discussion on battery electrodes and research trends is presented.

Results and discussion

For the selected scenarios, the second life of the battery varies from 8 to 20 years depending on the application and the requirements. It has been observed that the batteries connected to the electricity grid for energy arbitrage storage have the highest impact per provided kilowatt hour. On the contrary, the environmental benefit comes from applications working with renewable energy sources and presenting a longer lifetime. We pointed out that a correlation between cycling conditions and degradation mechanisms of the electrode materials is compulsory for proper use of the electric vehicle battery in a second-life application.

Conclusions

To limit the environmental impact, batteries should be associated with renewable energy sources in stationary applications. However, it is more profitable to re-use Li-ion batteries than to use new lead-acid batteries. Although many batteries applied for electric vehicles use graphite-based anodes, the latter may not be the most suitable for the second-life application. A better understanding of Li-ion battery degradation during the second-life application is required for the different existing chemistries.
  相似文献   

3.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

4.

Introduction

Few studies have investigated the influence of storage conditions on urine samples and none of them used targeted mass spectrometry (MS).

Objectives

We investigated the stability of metabolite profiles in urine samples under different storage conditions using targeted metabolomics.

Methods

Pooled, fasting urine samples were collected and stored at ?80 °C (biobank standard), ?20 °C (freezer), 4 °C (fridge), ~9 °C (cool pack), and ~20 °C (room temperature) for 0, 2, 8 and 24 h. Metabolite concentrations were quantified with MS using the AbsoluteIDQ? p150 assay. We used the Welch-Satterthwaite-test to compare the concentrations of each metabolite. Mixed effects linear regression was used to assess the influence of the interaction of storage time and temperature.

Results

The concentrations of 63 investigated metabolites were stable at ?20 and 4 °C for up to 24 h when compared to samples immediately stored at ?80 °C. When stored at ~9 °C for 24 h, few amino acids (Arg, Val and Leu/Ile) significantly decreased by 40% in concentration (P < 7.9E?04); for an additional three metabolites (Ser, Met, Hexose H1) when stored at ~20 °C reduced up to 60% in concentrations. The concentrations of four more metabolites (Glu, Phe, Pro, and Thr) were found to be significantly influenced when considering the interaction between exposure time and temperature.

Conclusion

Our findings indicate that 78% of quantified metabolites were stable for all examined storage conditions. Particularly, some amino acid concentrations were sensitive to changes after prolonged storage at room temperature. Shipping or storing urine samples on cool packs or at room temperature for more than 8 h and multiple numbers of freeze and thaw cycles should be avoided.
  相似文献   

5.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

6.

Background

Enterovirus (EV) infection has been a serious health issue in Asia-Pacific region. It has been indicated that the occurrence of fatal hand foot and mouth disease (HFMD) cases following EV71 infection is mainly attributed to pulmonary edema. However, the development of pulmonary disorders after EV71 infection remains largely unknown. To establish an EV71-infected animal model and further explore the underlying association of central nervous system (CNS) invasion with pulmonary edema, we isolated a clinical source EV71 strain (ZZ1350) from a severe case in Henan Province.

Methods

We evaluated the cytotoxicity of ZZ1350 strain and the susceptibility in 3-day-old BALB/c mice with intraperitoneal, intracerebral and intramuscular inoculation. Various histopathological and immunohistochemical techniques were applied to determine the target organs or tissue damage after infection. Correlation analysis was used to identify the relationship between CNS injury and pulmonary disorders.

Results

Our experimental results suggested that ZZ1350 (C4 subtype) had high cytotoxicity against African green monkey kidney (Vero) cells and human rhabdomyosarcoma (RD) cells and neonatal BALB/c mice were highly susceptible to the infection with ZZ1350 through three different inoculation routes (2?×?106 pfu/mouse) exhibiting severe neurological and respiratory symptoms that were similar to clinical observation. Viral replication was found in brain, spinal cord, skeletal muscle, lung, spleen, liver, heart of infected mice and these sections also showed histopathological changes. We found that brain histology score was positive correlated with lung histology score in total experimental mice and mice under the three inoculation routes (P?<?0.05). At the same time, there were positive correlations between spinal cord score and lung score in total experimental mice and mice with intracerebral inoculation (P?<?0.05).

Conclusions

ZZ1350 strain is effective to establish animal model of EV71 infection with severe neurological and respiratory symptoms. The development of pulmonary disorders after EV71 infection is associated with severity of CNS damage.
  相似文献   

7.

Introduction

Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.

Objective

To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.

Methods

Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.

Results

Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.

Conclusions

From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
  相似文献   

8.

Background

Density estimation is a key issue in wildlife management but is particularly challenging and labour-intensive for elusive species. Recently developed approaches based on remotely collected data and capture-recapture models, though representing a valid alternative to more traditional methods, have found little application to species with limited morphological variation. We implemented a camera trap capture-recapture study to survey wolf packs in a 560-km2 area of Central Italy. Individual recognition of focal animals (alpha) in the packs was possible by relying on morphological and behavioural traits and was validated by non-invasive genotyping and inter-observer agreement tests. Two types (Bayesian and likelihood-based) of spatially explicit capture-recapture (SCR) models were fitted on wolf pack capture histories, thus obtaining an estimation of pack density in the area.

Results

In two sessions of camera trapping surveys (2014 and 2015), we detected a maximum of 12 wolf packs. A Bayesian model implementing a half-normal detection function without a trap-specific response provided the most robust result, corresponding to a density of 1.21?±?0.27 packs/100 km2 in 2015. Average pack size varied from 3.40 (summer 2014, excluding pups and lone-transient wolves) to 4.17 (late winter-spring 2015, excluding lone-transient wolves).

Conclusions

We applied for the first time a camera-based SCR approach in wolves, providing the first robust estimate of wolf pack density for an area of Italy. We showed that this method is applicable to wolves under the following conditions: i) the existence of sufficient phenotypic/behavioural variation and the recognition of focal individuals (i.e. alpha, verified by non-invasive genotyping); ii) the investigated area is sufficiently large to include a minimum number of packs (ideally 10); iii) a pilot study is carried out to pursue an adequate sampling design and to train operators on individual wolf recognition. We believe that replicating this approach in other areas can allow for an assessment of density variation across the wolf range and would provide a reliable reference parameter for ecological studies.
  相似文献   

9.

Purpose

The current focus of environmental legislation for energy-using products is an efficient energy consumption in the use stage. However, the production and waste treatment of electronic products are also related to environmental impacts in terms of declining metal resources and growing waste streams. This paper investigates the environmental impacts of life time extension versus energy efficiency for the product group video projector using life cycle assessment (LCA).

Methods

The product under study was an average video projector based on three LCD projectors. The studied systems included two possibilities after a regular first usage period: reconditioning for a second use or replacement by a primary successor with an energy efficiency increase of 5 and 10%. All impacts addressed were accounted using the ReCiPe 2008 method. The impact contribution of projector components was identified at midpoint and endpoint levels, while life cycle impacts were calculated with a focus on three impact categories. Furthermore, the amortization period of production emissions was quantified.

Results and discussion

LCA results showed that the use stage dominates life cycle impacts of the global warming potential and primary energy demand. For the metal depletion potential, the production stage accounts for most of the total life cycle load. The highest shares in production emissions were identified for electronic components, namely printed wired boards and integrated circuits. Reconditioning and reuse of a secondary projector resulted in minor environmental impacts compared to the replacement and use of a primary projector with an energy efficiency increase of 5%. The saving potential of the primary energy demand is higher only in the case of a 10% more efficient device as compared to the secondary projector.

Conclusions

The study concluded that production emissions and their amortization period are relevant factors offsetting any environmentally beneficial measures applied during the use phase. The study suggests that life time extension of video projectors can provide higher environmental improvement potentials, while energy efficiency increase during usage is less beneficial, given that major improvements in energy efficiency do not occur. Recommendations are valid for this particular case study. The study suggests that the current focus of mandatory product requirements for energy-using products on energy efficiency increase should be extended to measures of life time extension in order to serve the intent of an integrated product policy.
  相似文献   

10.

Background

The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions.

Results

We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses.

Conclusions

We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.
  相似文献   

11.

Introduction

Raspberries are becoming increasingly popular due to their reported health beneficial properties. Despite the presence of only trace amounts of anthocyanins, yellow varieties seems to show similar or better effects in comparison to conventional raspberries.

Objectives

The aim of this work is to characterize the metabolic differences between red and yellow berries, focussing on the compounds showing a higher concentration in yellow varieties.

Methods

The metabolomic profile of 13 red and 12 yellow raspberries (of different varieties, locations and collection dates) was determined by UPLC–TOF-MS. A novel approach based on Pearson correlation on the extracted ion chromatograms was implemented to extract the pseudospectra of the most relevant biomarkers from high energy LC–MS runs. The raw data will be made publicly available on MetaboLights (MTBLS333).

Results

Among the metabolites showing higher concentration in yellow raspberries it was possible to identify a series of compounds showing a pseudospectrum similar to that of A-type procyanidin polymers. The annotation of this group of compounds was confirmed by specific MS/MS experiments and performing standard injections.

Conclusions

In berries lacking anthocyanins the polyphenol metabolism might be shifted to the formation of a novel class of A-type procyanidin polymers.
  相似文献   

12.

Objective

To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing.

Results

Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C.

Conclusion

Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
  相似文献   

13.

Background

Myelin oligodendrocyte glycoprotein immunoglobulin G1 (MOG-IgG1)-associated disease is suggested as a separate disease entity distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Nonetheless, the optimal treatment regimen for preventing relapses in MOG-IgG1-associated disease remains unclear.

Case presentation

We describe the case of a 45-year-old man with MOG-IgG1-positive highly relapsing optic neuritis who had experienced 5 attacks over 21?months and had monocular blindness despite prednisolone and azathioprine therapy. He began treatment with rituximab, which reduced the rate of relapse markedly. Following discontinuation of rituximab, however, the patient experienced two successive optic neuritis attacks 2 and 4?months after B-lymphocyte restoration.

Conclusions

Highly relapsing MOG-IgG1-associated disease can be prevented with rituximab even when the MOG-IgG1 titers are relatively stationary. Discontinuation of rituximab and restoration of B-lymphocytes may be associated with the rebound of disease activity.
  相似文献   

14.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

15.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

16.

Purpose

The improper handling of industrial hazardous waste (IHW), which comprises large amounts of toxic chemicals, heavy metals, or irradiation substances, is a considerable threat to human health and the environment. This study aims to quantify the life cycle environmental impacts of IHW landfilling and incineration in China, to identify its key factors, to improve its potential effects, and to establish a hazardous waste disposal inventory.

Methods

Life cycle assessment was conducted using the ReCiPe model to estimate the environmental impact of IHW landfilling and incineration. The characterization factors for the human toxicity and freshwater ecotoxicity categories shown in the ReCiPe were updated based on the geographies, population, food intake, and environmental conditions in China.

Results and discussion

The overall environmental burden was mainly attributed to the carcinogen category. The national carcinogen burden in 2014 at 37.8 CTUh was dominated by diesel consumption, cement and sodium hydroxide production, direct emission, transportation, and electricity generation stages caused by direct mercury and arsenic emissions, as well as indirect chromium emission. Although the atmospheric mercury emission directly caused by IHW incineration was comparative with the emission levels of developed countries, the annual direct mercury emission accounted for approximately 0.1% of the national mercury emission.

Conclusions

The key factors contributing to the reduction of the national environmental burden include the increasing diesel and electricity consumption efficiency, the reduction of cement and sodium hydroxide use, the development of air pollutant controlling systems, the reduction of transport distance between IHW disposers to suppliers, and the improvement of IHW recycling and reuse technologies.
  相似文献   

17.

Purpose

The expansion of the electric vehicle (EV) market will bring changes in the type of environmental impact generated by the transport sector. This will be partially associated to the introduction of new technologies for energy storage and powertrains, including electric motors technology, which can play a critical role for the EV. To assure its optimal performance, key components and innovative materials are integrated in current motor designs. Such is the case of permanent magnets (PM), commonly made of rare-earth elements, which have a history of ecological concerns related to its mining. The goal of the paper is to study novel traction e-motors and to assess the influence of its components, in the environmental performance of the motor and the electric vehicle.

Methods

In this study, a life cycle assessment (LCA) is performed, including the manufacturing, use, and end of life stages of a traction electric motor for EV applications. A comparison is presented, where the rare-earth magnets are replaced by ferrite magnets, under several efficiency scenarios. Average European conditions are considered for framing the modeling. A functional unit of 1 km driven by the vehicle is used.

Results and discussion

Twelve impact categories were selected to present the potential environmental impact of the motors. Energy consumption during the use stage was identified as a hotspot responsible for an important share of the impact. The amount of energy consumed is highly dependent on the efficiencies of the powertrain, which is why improving efficiency should be regarded as crucial for decreasing the environmental damage produced by the motor. The use of rare-earth magnets during manufacturing does not represent a significant share of the impact, as they only take 2 % of the total mass. Other components, including laminations, housing and windings were instead recognized as more significant than the mangets, mainly for climate change, toxicity of humans, soil and water bodies, as well as metal depletion. The use of alternative materials for rare-earth magnets can contribute in the reduction of the potential impact, as long as the overall efficiency of the motor remains the same or increases.

Conclusions

Based on the study results, it can be concluded that the environmental performance of traction motor is closely tight to its efficiency. Selection of materials during design should focus more on preserving or improving the efficiency of the motor, than on materials with low environmental impact during production.
  相似文献   

18.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

19.

Introduction

Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics.

Objectives

Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs.

Methods

A literature search of the current relevant primary research was performed.

Results

Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance.

Conclusion

Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
  相似文献   

20.

Purpose

Current ecodesign instruments usually focus on improving single life cycle stages, like the energy efficiency classes for motors put on the European market, which focus on the use stage. Resulting trade-offs between the life cycle stages are however often not integrated properly, like for instance trade-offs between manufacturing stage and use stage. The goal of this study was to evaluate the trade-offs between the additional efforts of producing energy-efficient motors (achieved, e.g., via different materials for certain components) and the advantages gained from the improved efficiency in operation.

Methods

For this case study, a life cycle assessment methodology according to ISO 14040/44 was applied for the whole life cycle (cradle to grave) of three electric motors, each from a different efficiency class, and one serving as baseline. The motors under study have the following specifications in common: asynchronous technology, 110 kW nominal power, cast iron series, and 4-poles. To evaluate the use stage, two different operational profiles were studied for 20 years’ service life.

Results and discussion

The results clearly indicated the dominance of the use stage in the motors’ life cycles and that an increase in efficiency pays off environmentally within the first month of operation in the applied load-time profiles. The dominating environmental impact categories, like ionizing radiation and global warming potential, relate to the consumption of electricity. The study results indicated also that the increase of the analyzed motors’ efficiency encompasses trade-offs between the stages materials, manufacturing, and end-of-life versus the use stage in regard to toxicity and (metal) resource depletion aspects, i.e., a burden shifting between energy-related impacts and the toxicity- and resource depletion-related impacts.

Conclusions

In the analyzed study set-ups, including the modeled energy generation scenarios for Europe in 2050, an environmental break-even is achieved in less than a month in all impact categories except for human toxicity. Thus, the further improvement of energy efficiency of drive systems is and will stay a central ecodesign lever. However, toxicity and resource depletion trade-offs should be considered carefully within decision support and decision-making, and further research on related characterization models is necessary. Further, it is concluded that the load-time profile as well as the motors’ service life have a high influence, and therefore, designing drive systems in context with the application seems to be an important approach to facilitate ecodesign.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号