首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eisosomes help sequester a subgroup of plasma membrane proteins into discrete membrane domains that colocalize with sites of endocytosis. Here we show that the major eisosome component Pil1 in vivo is a target of the long-chain base (LCB, the biosynthetic precursors to sphingolipids)-signaling pathway mediated by the Pkh-kinases. Eisosomes disassemble if Pil1 is hyperphosphorylated (i) upon overexpression of Pkh-kinases, (ii) upon reducing LCB concentrations by inhibiting serine-palmitoyl transferase in lcb1-mutant cells or by poisoning the enzyme with myriocin, and (iii) upon mimicking hyperphosphorylation in pil1-mutant cells. Conversely, more Pil1 assembles into eisosomes if Pil1 is hypophosphorylated (i) upon reducing Pkh-kinase activity in pkh1 pkh2-mutant cells, (ii) upon activating Pkh-kinases by addition of LCBs, and (iii) upon mimicking hypophosphorylation in pil1-mutant cells. The resulting enlarged eisosomes show altered organization. Other data suggest that Pkh signaling and sphingolipids are important for endocytosis. Taken together with our previous results that link eisosomes to endocytosis, these observations suggest that Pkh-kinase signaling relayed to Pil1 may help regulate endocytic events to modulate the organization of the plasma membrane.  相似文献   

2.
3.
Eisosomes, large protein complexes that are predominantly composed of BAR-domain-containing proteins Pil1 and its homologs, are situated under the plasma membrane of ascomycetes. A successful targeting of Pil1 onto the future site of eisosome accompanies maturation of eisosome. During or after recruitment, Pil1 undergoes self-assembly into filaments that can serve as scaffolds to induce membrane furrows or invaginations. Although a consequence of the invagination is likely to redistribute particular proteins and lipids to a different location, the precise physiological role of membrane invagination and eisosome assembly awaits further investigation. The present review summarizes recent research findings within the field regarding the detailed structural and functional significance of Pil1 on eisosome organization.  相似文献   

4.
The actin cytoskeleton plays a fundamental role in all eukaryotic cells it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.  相似文献   

5.
Ras nanoclusters: molecular structure and assembly   总被引:2,自引:0,他引:2  
H-, N- and K-ras4B are lipid-anchored, peripheral membrane guanine nucleotide binding proteins. Recent work has shown that Ras proteins are laterally segregated into non-overlapping, dynamic domains of the plasma membrane called nanoclusters. This lateral segregation is important to specify Ras interactions with membrane-associated proteins, effectors and scaffolding proteins and is critical for Ras signal transduction. Here we review biological, in vitro and structural data that provide insight into the molecular basis of how palmitoylated Ras proteins are anchored to the plasma membrane. We explore possible mechanisms for how the interactions of H-ras with a lipid bilayer may drive nanocluster formation.  相似文献   

6.
Cortical neurons show irregular but structured spike trains. This has been interpreted as evidence for 'temporal coding', whereby stimuli are represented by precise spike-timing patterns. Here, we suggest an alternative interpretation based on the older concept of the cell assembly. The dynamic evolution of assembly sequences, which are steered but not deterministically controlled by sensory input, is the proposed substrate of psychological processes beyond simple stimulus-response associations. Accordingly, spike trains show a temporal structure that is stimulus-dependent and more variable than would be predicted by strict sensory control. We propose four signatures of assembly organization that can be experimentally tested. We argue that many observations that have been interpreted as evidence for temporal coding might instead reflect an underlying assembly structure.  相似文献   

7.
阐明人巨细胞病毒(HCMV)病毒体的组装过程对研究HCMV致病分子机制有重要意义,同时可为抗病毒药物的设计与运用提供新的思路。HCMV组装可概括为两大阶段:初期为入核阶段,主要为核衣壳的组装。在胞质中表达的病毒蛋白形成多种形式的多聚体进入细胞核,在核内相互作用形成衣壳并将病毒DNA装入衣壳中,核衣壳初步形成。第二阶段为出核阶段,主要涉及被膜与包膜的组装。在核中形成的原始核衣壳出核移至胞质,最终在胞质中组装完成,此过程极其复杂,涉及众多蛋白间相互作用及宿主细胞的参与。值得一提的是,组装过程中多种蛋白的变异会导致病毒复制失败。组装完成的病毒体经修饰成熟释放出细胞后,再感染新的宿主细胞。本文对HCMV病毒体组装机制的最新研究作一综述。  相似文献   

8.
A recent structural study of a double-stranded DNA bacteriophage has provided remarkable new insights into the assembly of a complex virus particle and ushers in a new era in the imaging of non-icosahedral viruses.  相似文献   

9.
Actin filaments, assembled from highly purified actin from either skeletal muscle or Dictyostelium amoebae, are very stable under physiological ionic conditions. A small and limited amount of exchange of actin filament subunits for unpolymerized actin or subunits in other filaments has been measured by three techniques: fluorescence energy transfer, incorporation of 35S-labelled actin monomers into unlabelled actin filaments, and exchange of [14C]ATP with filament-bound ADP. A 40 kDa protein purified from amoebae destabilizes these otherwise stable filaments in a Ca2+-dependent manner. Myosin purified from Dictyostelium amoebae is phosphorylated both in the tail region of the heavy chain and in one of the light chains. Phosphorylation appears to regulate myosin thick-filament formation.  相似文献   

10.
Intron excision from precursor mRNAs (pre-mRNAs) in eukaryotes requires juxtaposition of reactive functionalities within the substrate at the heart of the spliceosome where the two chemical steps of splicing occur. Although a series of interactions between pre-mRNAs, pre-spliceosomal and spliceosomal factors is well established, the molecular mechanisms of splicing machinery assembly, as well as the temporal basis for organization of the substrate for splicing, remain poorly understood. Here we have used a directed hydroxyl radical probe tethered to pre-mRNA substrates to map the structure of the pre-mRNA substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly/recruitment and suggest a mechanism for the formation of the final active site of the mature spliceosome.  相似文献   

11.
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior–posterior and dorsal–ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.  相似文献   

12.
13.
Lumazine synthases have been observed in the form of pentamers, dimers of pentamers, icosahedral capsids consisting of 60 subunits and larger capsids with unknown molecular structure. Here we describe the analysis of the assembly of native and mutant forms of lumazine synthases from Bacillus subtilis and Aquifex aeolicus at various pH values and in the presence of different buffers using small angle X-ray scattering and electron microscopy. Both wild-type lumazine synthases are able to form capsids with a diameter of roughly 160 A and larger capsids with diameters of around 300 A. The relative abundance of smaller and larger capsids is strongly dependent on buffer and pH. Both forms can co-exist and are in some cases accompanied by other incomplete or deformed capsids. Several mutants of the B. subtilis lumazine synthase, in which residues in or close to the active site were replaced, as well as an insertion mutant of A. aeolicus lumazine synthase form partially or exclusively larger capsids with a diameter of about 300 A. The mutations also reduce or inhibit enzymatic activity, suggesting that the catalytic function of the enzyme is tightly correlated with its quaternary structure. The data show that multiple assembly forms are a general feature of lumazine synthases.  相似文献   

14.
The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome‐independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo. © 2004 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
18.
Protein machines and self assembly in muscle organization.   总被引:2,自引:0,他引:2  
The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships.  相似文献   

19.
Dendritic spines mediate most excitatory synapses in the CNS and are therefore likely to be of major importance for neural processing. We review the structural aspects of dendritic spines, with particular emphasis on recent advances in the characterization of their molecular components. Spine morphology is very diverse and spine size is correlated with the strength of the synaptic transmission. In addition, the spine neck biochemically isolates individual synapses. Therefore, spine morphology directly reflects its function. A large number of molecules have been described in spines, involving several biochemical families. Considering the small size of a spine, the variety of molecules found is astounding, suggesting that spines are paramount examples of biological nanotechnology. Single-molecular studies appear necessary for future progress. The purpose of this rich molecular diversity is still mysterious but endows synapses with a diverse and flexible biochemical machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号