首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
We determined the compositions of bacterioplankton communities in surface waters of coastal California using clone libraries of 16S rRNA genes and fluorescence in situ hybridization (FISH) in order to compare the community structures inferred from these two culture-independent approaches. The compositions of two clone libraries were quite similar to those of clone libraries of marine bacterioplankton examined by previous studies. Clones from γ-proteobacteria comprised ca. 28% of the libraries, while approximately 55% of the clones came from α-proteobacteria, which dominated the clone libraries. The Cytophaga-Flavobacter group and three others each comprised 10% or fewer of the clone libraries. The community composition determined by FISH differed substantially from the composition implied by the clone libraries. The Cytophaga-Flavobacter group dominated 8 of the 11 communities assayed by FISH, including the two communities assayed using clone libraries. On average only 10% of DAPI (4′,6′-diamidino-2-phenylindole)-stained bacteria were detected by FISH with a probe for α-proteobacteria, but 30% of DAPI-stained bacteria appeared to be in the Cytophaga-Flavobacter group as determined by FISH. α-Proteobacteria were greatly overrepresented in clone libraries compared to their relative abundance determined by FISH, while the Cytophaga-Flavobacter group was underrepresented in clone libraries. Our data show that the Cytophaga-Flavobacter group can be a numerically dominant component of coastal marine bacterioplankton communities.  相似文献   

2.
PCR primers were patterned after chitinase genes in four gamma-proteobacteria in the families Alteromonadaceae and Enterobacteriaceae (group I chitinases) and used to explore the occurrence and diversity of these chitinase genes in cultured and uncultured marine bacteria. The PCR results from 104 bacterial strains indicated that this type of chitinase gene occurs in two major groups of marine bacteria, alpha- and gamma-proteobacteria, but not the Cytophaga-Flavobacter group. Group I chitinase genes also occur in some viruses infecting arthropods. Phylogenetic analysis indicated that similar group I chitinase genes occur in taxonomically related bacteria. However, the overall phylogeny of chitinase genes did not correspond to the phylogeny of 16S rRNA genes, possibly due to lateral transfer of chitinase genes between groups of bacteria, but other mechanisms, such as gene duplication, cannot be ruled out. Clone libraries of chitinase gene fragments amplified from coastal Pacific Ocean and estuarine Delaware Bay bacterioplankton revealed similarities and differences between cultured and uncultured bacteria. We had hypothesized that cultured and uncultured chitin-degrading bacteria would be very different, but in fact, clones having nucleotide sequences identical to those of chitinase genes of cultured alpha-proteobacteria dominated both libraries. The other clones were similar but not identical to genes in cultured gamma-proteobacteria, including vibrios and alteromonads. Our results suggest that a closer examination of chitin degradation by alpha-proteobacteria will lead to a better understanding of chitin degradation in the ocean.  相似文献   

3.
In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.  相似文献   

4.
Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by gamma-proteobacteria (53 to 64%), followed by beta-proteobacteria (18 to 21%) and alpha-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by alpha-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of delta-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals.  相似文献   

5.
Dilution cultures are a common technique for measuring the growth of bacterioplankton communities. In this study, the taxonomic composition of marine bacterioplankton dilution cultures was followed in water samples from Plymouth Sound and the English Channel (UK). Bacterial abundances as well as protein and DNA content were closely monitored by flow cytometry. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rDNA fragments and fluorescence in situ hybridization (FISH) were applied directly to the water samples and to cells sorted from the dilution cultures based on their protein and DNA content. As expected, a rapid activation of bacteria occurred. However, molecular techniques showed that the community developed in the dilution culture within 1 day was significantly different from that in the original water samples. Whereas in the original samples, cells detectable by FISH were dominated by members of the C ytophaga / Flavobacterium (CF) cluster, in dilution cultures, gamma-proteobacteria accounted for the majority of cells detected, followed by alpha-proteobacteria. An actively growing and an apparently non-growing population with average cellular protein contents of 24 and 4.5 fg respectively, were sorted by flow cytometry. FISH indicated mostly gamma- (64%) and alpha-proteobacteria (33%) in the first active fraction and 78% members of the CF cluster in the second fraction. Sequencing of DGGE bands confirmed the FISH assignments of the latter two groups. The data presented clearly show that even relatively short-term dilution experiments do not measure in situ growth, but rather growth patterns of an enrichment. Furthermore, it was demonstrated that the combination of flow cytometric analysis and sorting combined with FISH and DGGE analysis presented a fairly rapid method of analysing the taxonomic composition of marine bacterioplankton.  相似文献   

6.
Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.  相似文献   

7.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

8.
Culturability and In situ abundance of pelagic bacteria from the North Sea   总被引:19,自引:0,他引:19  
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.  相似文献   

9.
The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.  相似文献   

10.
Catalysed reported deposition-FISH and clone libraries indicated that Roseobacter , followed by Bacteroidetes , and some gammaproteobacterial groups such as SAR86, dominated the composition of bacterioplankton in Ría de Vigo, NW Spain, in detriment to SAR11 (almost absent in this upwelling ecosystem). Since we sampled four times during the year, we observed pronounced changes in the structure of each bacterioplankton component, particularly for the Roseobacter lineage. We suggest that such variations in the coastal upwelling ecosystem of Ría de Vigo were associated with the characteristic phytoplankton communities of the four different hydrographical situations: winter mixing, spring bloom, summer stratification, and autumn upwelling. We retrieved new sequences among the major marine bacterial lineages, particularly among Roseobacter , SAR11, and especially SAR86. The spring community was dominated by two Roseobacter clades that had previously been related to phytoplankton blooms. In the other seasons, communities with higher diversity than the spring one were detected.  相似文献   

11.
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.  相似文献   

12.
Even though it is widely accepted that bacterioplankton growth in lakes and marine ecosystems is determined by the trophic status of the systems, knowledge of the relationship between nutrient concentrations and growth of particular bacterial species is almost nonexistent. To address this question, we performed a series of culture experiments with water from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat (northern Red Sea). In the initial water samples, the proportion of CFU was typically <0.002% of the 4',6'-diamidino-2-phenylindole (DAPI) counts. During incubation until the early stationary phase, the proportion of CFU increased to 20% of the DAPI counts and to 2 to 15% of the DAPI counts in unenriched lake water and seawater dilution cultures, respectively. Sequencing of the 16S ribosomal DNA of colony-forming bacteria in these cultures consistently revealed an abundance of alpha-proteobacteria, but notable phylogenetic differences were found at the genus level. Marine dilution cultures were dominated by bacteria in the Roseobacter clade, while lake dilution cultures were dominated by bacteria affiliated with the genera Sphingomonas and CAULOBACTER: In nutrient (glucose, ammonium, phosphate) addition experiments the CFU comprised 20 to 83% of the newly grown cells. In these incubation experiments fast-growing gamma-proteobacteria dominated; in the marine experiments primarily different Vibrio and Alteromonas species appeared, while in the lake water experiments species of the genera Shewanella, Aeromonas, and Rheinheimera grew. These results suggest that major, but different, gamma-proteobacterial genera in both freshwater and marine environments have a preference for elevated concentrations of nutrients and easily assimilated organic carbon sources but are selectively outcompeted by alpha-proteobacteria in the presence of low nutrient concentrations.  相似文献   

13.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

14.
We used a method that combines microautoradiography with hybridization of fluorescent rRNA-targeted oligonucleotide probes to whole cells (MICRO-FISH) to test the hypothesis that the relative contributions of various phylogenetic groups to the utilization of dissolved organic matter (DOM) depend solely on their relative abundance in the bacterial community. We found that utilization of even simple low-molecular-weight DOM components by bacteria differed across the major phylogenetic groups and often did not correlate with the relative abundance of these bacterial groups in estuarine and coastal environments. The Cytophaga-Flavobacter cluster was overrepresented in the portion of the assemblage consuming chitin, N-acetylglucosamine, and protein but was generally underrepresented in the assemblage consuming amino acids. The amino acid-consuming assemblage was usually dominated by the alpha subclass of the class Proteobacteria, although the representation of alpha-proteobacteria in the protein-consuming assemblages was about that expected from their relative abundance in the entire bacterial community. In our experiments, no phylogenetic group dominated the consumption of all DOM, suggesting that the participation of a diverse assemblage of bacteria is essential for the complete degradation of complex DOM in the oceans. These results also suggest that the role of aerobic heterotrophic bacteria in carbon cycling would be more accurately described by using three groups instead of the single bacterial compartment currently used in biogeochemical models.  相似文献   

15.

Background

Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean.

Methodology/Principal Findings

We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent.

Conclusions/Significance

Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.  相似文献   

16.
The potential effect of UV radiation on the composition of coastal marine bacterioplankton communities was investigated. Dilution cultures with seawater collected from the surface mixed layer of the coastal North Sea were exposed to different ranges of natural or artificial solar radiation for up to two diurnal cycles. The composition of the bacterioplankton community prior to exposure was compared to that after exposure to the different radiation regimes using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA and 16S ribosomal DNA. Only minor changes in the composition of the bacterial community in the different radiation regimes were detectable. Sequencing of selected bands obtained by DGGE revealed that some species of the Flexibacter-Cytophaga-Bacteroides (FCB) group were sensitive to UV radiation while other species of the FCB group were resistant. Overall, only up to approximately 10% of the operational taxonomic units present in the dilution cultures appeared to be affected by UV radiation. Thus, we conclude that UV radiation has little effect on the composition of coastal marine bacterioplankton communities in the North Sea.  相似文献   

17.
The diversity of freshwater bacterioplankton communities has not been extensively studied despite their key role in foodwebs and the cycling of carbon and associated major elements. In order to explore and characterize the composition of bacterioplankton associated with cyanobacterial blooms, large 16S rRNA clone libraries from four lakes experiencing such blooms were analysed. The four libraries contained 1461 clones, of which 559 were prokaryotic sequences of non-cyanobacterial origin. These clones were classified into 158 operational taxonomic units affiliated mainly with bacterial divisions commonly found in freshwater systems, e.g. Proteobacteria, Bacteriodetes, Actinobacteria, Verrucomicrobia and Planctomycetes. Richness and evenness of non-cyanobacterial clones were similar to other clone libraries obtained for freshwater bacterioplankton, suggesting that bacterial communities accompanying cyanobacterial blooms are as diverse as non-bloom communities. Many of the identified operational taxonomic units grouped with known freshwater clusters but the libraries also contained novel clusters of bacterial sequences that may be characteristic for cyanobacterial blooms. About 25% of the operational taxonomic units were detected in more than one lake. Even so, 16S rRNA heterogeneity analysis demonstrated large differences in community composition between lakes regardless of their similar characteristics and close proximity. Hence even the similar environmental conditions created by different cyanobacterial blooms may foster very dissimilar bacterial communities, which could indicate that the genetic diversity in lake bacteria have been underestimated in the past.  相似文献   

18.
In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM 13C-NaHCO3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.  相似文献   

19.
贫营养湖泊花神湖和紫霞湖浮游细菌群落结构分析   总被引:1,自引:0,他引:1  
以南京市花神湖和紫霞湖两个贫营养型湖泊为研究对象,通过构建花神湖和紫霞湖16S rRNA基因克隆文库探讨了浮游细菌群落结构组成的变化。结果表明,花神湖和紫霞湖两湖泊水体中浮游细菌群落结构相似,主要隶属于放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、α-变形菌门(Alphaproteobacteria)、β-变形菌门(Betaproteobacteria)、杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、疣微菌门(Verrucomicrobia)和芽单胞菌门(Gemmatimonadetes),其中放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、β-变形菌门(Betaproteobacteria)是优势细菌类群。两个湖泊水体中75%的细菌与GenBank中已有的未培养细菌同源性高于97%,同时在两个克隆文库中还发现了6个淡水细菌新类群。通过对低纬度区域贫营养型湖泊浮游细菌群落结构的分析,加深了我们对浮游细菌多样性的了解,表明湖泊浮游细菌多样性有待进一步认识。  相似文献   

20.
The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [(35)S]DMSP ranged between 27 and 51% of 4',6-diamidino-2-phenylindole (DAPI)-positive cells, similar to or slightly lower than the proportion incorporating [(3)H]leucine. In the northwest Mediterranean coast, the proportion of cells incorporating sulfur from [(35)S]DMSP increased from 5 to 42% from January to March, coinciding with the development of a phytoplankton bloom. At the same time, the proportion of cells incorporating [(3)H]leucine increased from 21 to 40%. The combination of AU and fluorescence in situ hybridization (FISH) revealed that the Roseobacter clade (alpha-proteobacteria) accounted for 13 to 43% of the microorganisms incorporating [(35)S]DMSP at both sampling sites. Significant uptake of sulfur from DMSP was also found among members of the gamma-proteobacteria and Cytophaga-Flavobacterium groups. Roseobacter and gamma-proteobacteria exhibited the highest percentage of DAPI-positive cells incorporating (35)S from DMSP (around 50%). Altogether, the application of AU with [(35)S]DMSP combined with FISH indicated that utilization of S from DMSP is a widespread feature among active marine bacteria, comparable to leucine utilization. These results point toward DMSP as an important substrate for a broad and diverse fraction of marine bacterioplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号