首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. W. Joy 《Plant physiology》1969,44(6):845-848
Lemna minor grown in sterile culture on a minerals-sucrose medium can utilize as nitrogen source, in order of increasing growth rate: ammonia, nitrate, a mixture of glutamic and aspartic acids plus arginine, or a balanced mixture of amino acids (hydrolyzed casein). Maximum growth is found with nitrate plus hydrolyzed casein.Many synthetic mixtures of amino acids are unable to support growth. Many single amino acids are inhibitory, and when added (at 2 mm or less) to cultures, growing in the presence of nitrate, cause a decrease in growth rate or even death of the plants (e.g. with alanine, valine, methionine or leucine). Some of these inhibitory effects are also found when the amino acid is added to cultures growing on ammonia or hydrolyzed casein. Arginine was the only amino acid of those tested which gave a marked stimulation of growth when added to cultures growing with inorganic nitrogen.The rapid rate of growth, sterile nature of tissue, decreased biological variation of samples containing many plants and ability to utilize different culture media make this an attractive organism for studies on higher plant metabolism.  相似文献   

2.
Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were <5 nM in most samples. This means that the specific activity of a 3H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.  相似文献   

3.
Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were <5 nM in most samples. This means that the specific activity of a H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.  相似文献   

4.
Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.  相似文献   

5.
Duckweed colonies were grown on 1 l of nutrient solution supplied with 10 M l-[14C]leucine or with 25 M l-[14C]valine. Under these conditions the exogenously supplied amino acid did not inhibit growth, but caused in the plants a moderately increased pool of that amino acid, which remained essentially constant during the culture period. The effect of the increased pool of valine or leucine on the biosynthesis of these amino acids was determined from isotope dilution in the protein-bound valine and-or leucine. An increase in the leucine pool from 1.1 to 5.0 nmol mg–1 dry weight resulted in a 21% reduction of metabolite flow through the common part of the valine-leucine biosynthetic pathway; leucine synthesis was reduced by 35%, but valine synthesis by only 5% and isoleucine synthesis was apparently unaffected. An increase in the valine pool from 3.2 to 6.6 nmol mg–1 dry weight reduced the metabolite flow through the valine-leucine pathway by 48%, valine synthesis by 70%, and leucine synthesis from pyruvate by 29%, which was compensated by leucine synthesis from exogenous valine, whereas the synthesis of isoleucine was not changed. It is concluded that the biosynthesis of valine and leucine is mainly controlled by feedback inhibition of acetohydroxyacid synthetase. In vivo, the feedback inhibition can be exerted in such a way that synthesis of acetolactate (the precursor of valine and leucine) is appreciably reduced, whereas synthesis of acetohydroxybutyrate (the isoleucine precursor) is not inhibited.  相似文献   

6.
Peroxisomal metabolism of propionic acid and isobutyric acid in plants   总被引:1,自引:0,他引:1  
The subcellular sites of branched-chain amino acid metabolism in plants have been controversial, particularly with respect to valine catabolism. Potential enzymes for some steps in the valine catabolic pathway are clearly present in both mitochondria and peroxisomes, but the metabolic functions of these isoforms are not clear. The present study examined the possible function of these enzymes in metabolism of isobutyryl-CoA and propionyl-CoA, intermediates in the metabolism of valine and of odd-chain and branched-chain fatty acids. Using (13)C NMR, accumulation of beta-hydroxypropionate from [2-(13)C]propionate was observed in seedlings of Arabidopsis thaliana and a range of other plants, including both monocots and dicots. Examination of coding sequences and subcellular targeting elements indicated that the completed genome of A. thaliana likely codes for all the enzymes necessary to convert valine to propionyl-CoA in mitochondria. However, Arabidopsis mitochondria may lack some of the key enzymes for metabolism of propionyl-CoA. Known peroxisomal enzymes may convert propionyl-CoA to beta-hydroxypropionate by a modified beta-oxidation pathway. The chy1-3 mutation, creating a defect in a peroxisomal hydroxyacyl-CoA hydrolase, abolished the accumulation of beta-hydroxyisobutyrate from exogenous isobutyrate, but not the accumulation of beta-hydroxypropionate from exogenous propionate. The chy1-3 mutant also displayed a dramatically increased sensitivity to the toxic effects of excess propionate and isobutyrate but not of valine. (13)C NMR analysis of Arabidopsis seedlings exposed to [U-(13)C]valine did not show an accumulation of beta-hydroxypropionate. No evidence was observed for a modified beta-oxidation of valine. (13)C NMR analysis showed that valine was converted to leucine through the production of alpha-ketoisovalerate and isopropylmalate. These data suggest that peroxisomal enzymes for a modified beta-oxidation of isobutyryl-CoA and propionyl-CoA could function for metabolism of substrates other than valine.  相似文献   

7.
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.  相似文献   

8.
The metabolic control of branched chain amino acid (BCAA) biosynthesis involves allosteric regulation of acetolactate synthase (ALS) by the end-products of the pathway, valine, leucine and isoleucine. We describe here the molecular basis of valine resistance. We cloned and sequenced an ALS gene from the tobacco mutant Valr-1 and found a single basepair substitution relative to the wild-type allele. This mutation causes a serine to leucine change in the amino acid sequence of ALS at position 214. We then mutagenized the wild-type allele of the ALS gene ofArabidopsis and found that it confers valine resistance when introduced into tobacco plants. Taken together, these results suggest that the serine to leucine change at position 214 of ALS is responsible for valine resistance in tobacco.This paper is dedicated to the memory of Jean-Pierre Bourgin, who died on October 29, 1994, at the age of 50  相似文献   

9.
The effects of L-amino acids on arginase from the hepatopancreas of the snail Ariophanta (=Cryptozona) ligulata were studied. This enzyme was inhibited by ornithine, valine, lysine, leucine, isoleucine, proline and threonine. The other amino acids were without any significant effect. Only ornithine was a non-competitive inhibitor, where as all the other inhibitory amino acids were competitive.  相似文献   

10.
The adequate stimuli for taste receptors on the legs of tsetseflies (Glossina spp.) have hitherto been unknown. Here we presentelectrophysiological evidence that for Glossina fuscipes fuscipeshuman sweat—man is one of the flies’ hosts–isan adequate stimulus. The receptor cells which respond to humansweat are located in two sensilla proximal to the base of theempodium at the distal end of the fifth tarsomere. The receptorsare sensitive to four of the 14 major components of sweat tested:uric acid, leucine, valine and lactic acid. We show that fliesdisplay more feeding behaviour on surfaces treated with sweat,uric acid, leucine or valine than on untreated surfaces.  相似文献   

11.
Interconversion of valine and leucine by Clostridium sporogenes.   总被引:4,自引:0,他引:4       下载免费PDF全文
Clostridium sporogenes has been found to require L-leucine and L-valine for growth in a minimal medium, although valine can be replaced by isobutyrate and leucine by isovalerate. Cells grown in minimal media incorporated significant 14C from [14C]valine into leucine and from [14C]leucine into valine. Growth with [4,5-3H]leucine also resulted in the incorporation of 3H into valine. These results indicate that these bacteria can interconvert leucine and valine.  相似文献   

12.
The heterotrophic growth of Thiobacillus acidophilus was inhibited by branched-chain amino acids; valine, isoleucine, and leucine. The inhibition by valine and leucine were partially reversed by isoleucine, and the inhibition by isoleucine was partially reversed by valine. Inhibitions by methionine or threonine were partially reversed when both amino acids were present in the growth medium. Inhibition by tyrosine was increased by phenylalanine or tryptophan. Cystine completely inhibited growth. Other amino acids tested produced little or no inhibition. Acetohydroxy acid synthetase (AHAS) activity was demonstrated in crude extracts of T. acidophilus. In crude extracts the optimum pH was 8.5 with a shift to 9.0 in the presence of valine. Valine was the only branched-chain amino acid which inhibited the AHAS activity. The presence of only one peak of AHAS activity upon centrifugation in linear glycerol density gradients demonstrated that the AHAS activity sediments as one component.  相似文献   

13.
The effect of amino acid on muscle protein degradation remains unclear. Recent studies have elucidated that proteolysis in catabolic conditions occurs through ubiquitin-proteasome proteolysis pathway and that muscle-specific ubiquitin ligases (atrogin-1 and MuRF1) play an important role in protein degradation. In the present study, we examined the direct effect of 5 mM amino acids (leucine, isoleucine, valine, glutamine and arginine) on atrogin-1 and MuRF1 levels in C2C12 muscle cells and the involved intracellular signal transduction pathway. Leucine, isoleucine and valine suppressed atrogin-1 and MuRF1 mRNA levels (approximately equal to 50%) at 6 and 24 h stimulations. Arginine showed a similar effect except at 24 h-treatment for atrogin-1 mRNA. However, glutamine failed to reduce atrogin-1 and MuRF1 mRNA levels. The inhibitory effect of leucine, isoleucine or arginine on atrogin-1 mRNA level was reversed by rapamycin, although wortmannin did not reverse the effect. PD98059 and HA89 reduced basal atrogin-1 level without influencing the inhibitory effects of those amino acids. The inhibitory effect of leucine, isoleucine or arginine on MuRF1 mRNA levels was not reversed by rapamycin. Taken together, these findings indicated that leucine, isoleucine and arginine decreased atrogin-1 mRNA levels via mTOR and that different pathways were involved in the effect of those amino acids on MuRF1 mRNA levels.  相似文献   

14.
《Plant science》1986,46(3):207-211
Previous field observations and greenhouse studies described here involving DPX-F6025, a soybean herbicide, show that soybean cultivars and maize have different sensitivities to the herbicide. The sensitivity of suspension cultures of the soybean (Glycine max (L.) Merr.) cultivars A3127, Earlyana and Old Dominion, and G. canescens F.J. Herm and maize (Zea mays L.) were tested against varying concentrations of DPX-F6025. The response of the cells in vitro correlates well with the whole plant response since maize and Old Dominion are much more sensitive than G. canescens and A3127, and Earlyana is more tolerant yet. The respective I50 values were about 1, 5, 60, 75 and 800 nM. The inhibitory effect of 1 μM DPX-F6025 was at least partially reversed by exogenous valine and/or isoleucine. Levels of free isoleucine, leucine and valine in the cultured cells did not correlate with herbicide sensitivity.  相似文献   

15.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

16.
Protein degradation in isolated rat hepatocytes, as measured by the release of [14C]valine from pre-labelled protein, is partly inhibited by a physiologically balanced mixture of amino acids. The inhibition is largely due to the seven amino acids leucine, phenylalanine, tyrosine, tryptophan, histidine, asparagine and glutamine.When the amino acids are tested individually at different concentrations, asparagine and glutamine are the strongest inhibitors. However, when various combinations are tested, a mixture of the first five amino acids as well as a combination of leucine and asparagine inhibit protein degradation particularly strongly.The inhibition brought about by asparagine plus leucine is not additive to the inhibition by propylamine, a lysosomotropic inhibitor; thus indicating that the amino acids act exclusively upon the lysosomal pathway of protein degradation.Following a lag of about 15 min the effect of asparagine plus leucine is maximal and equal to the effect of propylamine, suggesting that their inhibition of the lysosomal pathway is complete as well as specific.Degradation of endocytosed 125I-labelled asialofetuin is not affected by asparagine plus leucine, indicating that the amino acids do not affect lysosomes directly, but rather inhibit autophagy at a step prior to the fusion of autophagic vacuoles with lysosomes.The aminotransferase inhibitor, aminooxyacetate, does not prevent the inhibitory effect of any of the amino acids, i.e. amino acid metabolites are apparently not involved.  相似文献   

17.
Isolation of mutants lacking branched-chain amino acid transaminase.   总被引:1,自引:0,他引:1  
Variants of the Chinese hamster ovary cell have been isolated which can no longer grow when valine, leucine, or isoleucine is replaced in the culture medium by its respective alpha-keto acid: alpha-ketoisovaleric acid, alpha-ketoisocaproic acid, or alpha-keto-beta-methylvaleric acid. These variants lack branched-chain amino acid transaminase activity. Evidence is presented indicating these variants to be single gene mutants. Genetic evidence is also presented confirming previous biochemical evidence that a single enzyme carries out transaminase functions on valine, leucine, and isoleucine. The branched-chain transaminase-deficient (trans-) mutants can be reverted to wild-type behavior by treatment with mutagenic agents. These mutants promise to be useful in exploring regulatory mechanisms in biochemical, genetic, and cancer research.  相似文献   

18.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

19.
Amino Acid Metabolism of Lemna minor L. : II. Responses to Chlorsulfuron   总被引:7,自引:6,他引:1  
Chlorsulfuron, an inhibitor of acetolactate synthase (EC 4.1.3.18) (TB Ray 1984 Plant Physiol 75: 827-831), markedly inhibited the growth of Lemna minor at concentrations of 10−8 molar and above, but had no inhibitory effects on growth at 10−9 molar. At growth inhibitory concentrations, chlorsulfuron caused a pronounced increase in total free amino acid levels within 24 hours. Valine, leucine, and isoleucine, however, became smaller percentages of the total free amino acid pool as the concentration of chlorsulfuron was increased. At concentrations of chlorsulfuron of 10−8 molar and above, a new amino acid was accumulated in the free pool. This amino acid was identified as α-amino-n-butyrate by chemical ionization and electron impact gas chromatography-mass spectrometry. The amount of α-amino-n-butyrate increased from undetectable levels in untreated plants, to as high as 840 nanomoles per gram fresh weight (2.44% of the total free pool) in plants treated with 10−4 molar chlorsulfuron for 24 hours. The accumulation of this amino acid was completely inhibited by methionine sulfoximine. Chlorsulfuron did not inhibit the methionine sulfoximine induced accumulations of valine, leucine, and isoleucine, supporting the idea that the accumulation of the branched-chain amino acids in methionine sulfoximine treated plants is the result of protein turnover rather than enhanced synthesis. Protein turnover may be primarily responsible for the failure to achieve complete depletion of valine, leucine, and isoleucine even at concentrations of chlorsulfuron some 104 times greater than that required to inhibit growth. Tracer studies with 15N demonstrate that chlorsulfuron inhibits the incorporation of 15N into valine, leucine, and isoleucine. The α-amino-n-butyrate accumulated in the presence of chlorsulfuron and [15N]H4+ was heavily labeled with 15N at early time points and appeared to be derived by transamination from a rapidly labeled amino acid such as glutamate or alanine. We propose that chlorsulfuron inhibition of acetolactate synthase may lead to accumulation of 2-oxobutyrate in the isoleucine branch of the pathway, and transamination of 2-oxobutyrate to α-amino-n-butyrate by a constitutive transaminase utilizing either glutamate or alanine as α-amino-N donors.  相似文献   

20.
Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号