首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human HeLa cells transfected with mouse Cx45 and rat RIN cells transfected with chicken Cx45 were used to study the electrical and permeability properties of Cx45 gap junction hemichannels. With no extracellular Ca(2+), whole-cell recording revealed currents arising from hemichannels in both transfected cell lines. Multichannel currents showed a time-dependent activation or deactivation sensitive to voltage, V(m). These currents did not occur in non-transfected cells. The hemichannel currents were inhibited by raising extracellular Ca(2+) or by acidification with CO(2). The unitary conductance exhibited V(m) dependence (i.e., gamma(hc,main) increased/decreased with hyperpolarization/depolarization). Extrapolation to V(m) = 0 mV led to a gamma(hc,main) of 57 pS, roughly twice the conductance of an intact Cx45 gap junction channel. The open channel probability, P(o), was V(m)-dependent, declining at negative V(m) (P(o) < 0.11, V(m) < -50 mV), and increasing at positive V(m) (P(o) approximately 0.76, V(m) > 50 mV). Moreover, Cx45 nonjunctional hemichannels appeared to mediate lucifer yellow (LY) and propidium iodide (PI) dye uptake from the external solution when extracellular Ca(2+) level was reduced. Dye uptake was directly proportional to the number of functioning hemichannels. No significant dye uptake was detected in non-transfected cells. Cx45 transfected HeLa and RIN cells also allowed dye to leak out when preloaded with LY and then incubated in Ca(2+)-free external solution, whereas little or no dye leakage was observed when these cells were incubated with 2 mM external Ca(2+). Intact Cx45 gap junction channels allowed passage of either LY or PI dye, but their respective flux rates were different. Comparison of LY diffusion through Cx45 hemichannels and intact gap junction channels revealed that the former is more permeable, suggesting that gap junction channel pores exhibit more allosterical restriction to the dye molecules than the unopposed hemichannel. The data demonstrate the opening of Cx45 nonjunctional hemichannels in vertebrate cells when the external Ca(2+) concentration is reduced.  相似文献   

2.
Intracellular calcium changes trigger connexin 32 hemichannel opening   总被引:9,自引:0,他引:9  
Connexin hemichannels have been proposed as a diffusion pathway for the release of extracellular messengers like ATP and others, based on connexin expression models and inhibition by gap junction blockers. Hemichannels are opened by various experimental stimuli, but the physiological intracellular triggers are currently not known. We investigated the hypothesis that an increase of cytoplasmic calcium concentration ([Ca2+]i) triggers hemichannel opening, making use of peptides that are identical to a short amino-acid sequence on the connexin subunit to specifically block hemichannels, but not gap junction channels. Our work performed on connexin 32 (Cx32)-expressing cells showed that an increase in [Ca2+]i triggers ATP release and dye uptake that is dependent on Cx32 expression, blocked by Cx32 (but not Cx43) mimetic peptides and a calmodulin antagonist, and critically dependent on [Ca2+]i elevation within a window situated around 500 nM. Our results indicate that [Ca2+]i elevation triggers hemichannel opening, and suggest that these channels are under physiological control.  相似文献   

3.
《FEBS letters》2014,588(8):1446-1457
Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.  相似文献   

4.
To address the role of gap junction hemichannels in apoptosis, the cell death induced by staurosporine (ST) was evaluated in wild type HeLa cells (HeLa-WT) and transfectants expressing either full-length connexin43 (HeLa-Cx43) or a C-terminal truncation of Cx43 (HeLa-ΔCT). Cell death was measured with fluorescence-activated cell sorting (FACS), both DNA and nuclear fragmentation methods and assays for PARP and caspase 3. The ST-mediated cell death was accelerated in HeLa-Cx43 cells compared to HeLa-WT and HeLa-ΔCT. To determine why HeLa-Cx43 cells were more susceptible to ST, the phosphorylation state and the localization of Cx43 protein within cells were examined using specific Cx43 antibodies. The phosphorylated forms of Cx43 were sharply reduced in HeLa-Cx43 cells treated with ST. Moreover, in ST-treated HeLa-Cx43 cells, Cx43 was mainly observed at the cell surface. In contrast, the truncated form of Cx43 found in HeLa-ΔCT cells, which lacks many of the normal phosphorylation sites, was observed in the cytosol with ST treatment. To examine the hemichannels in the plasma membranes of ST-treated HeLa-Cx43 cells, several dye uptake methods using carboxyfluorescein and propidium iodide were employed. While the number of fluorescent cells did not change in HeLa-WT and HeLa-ΔCT cells with ST treatment, the number of fluorescent HeLa-Cx43 cells increased more than ten-fold. These results indicate that the increases in cell surface Cx43 seen with immunofluorescence and the elevated hemichannel activities detected with dye uptake could help explain the accelerated cell death observed in ST-treated HeLa-Cx43 cells.  相似文献   

5.
To address the role of gap junction hemichannels in apoptosis, the cell death induced by staurosporine (ST) was evaluated in wild type HeLa cells (HeLa-WT) and transfectants expressing either full-length connexin43 (HeLa-Cx43) or a C-terminal truncation of Cx43 (HeLa-DeltaCT). Cell death was measured with fluorescence-activated cell sorting (FACS), both DNA and nuclear fragmentation methods and assays for PARP and caspase 3. The ST-mediated cell death was accelerated in HeLa-Cx43 cells compared to HeLa-WT and HeLa-DeltaCT. To determine why HeLa-Cx43 cells were more susceptible to ST, the phosphorylation state and the localization of Cx43 protein within cells were examined using specific Cx43 antibodies. The phosphorylated forms of Cx43 were sharply reduced in HeLa-Cx43 cells treated with ST. Moreover, in ST-treated HeLa-Cx43 cells, Cx43 was mainly observed at the cell surface. In contrast, the truncated form of Cx43 found in HeLa-DeltaCT cells, which lacks many of the normal phosphorylation sites, was observed in the cytosol with ST treatment. To examine the hemichannels in the plasma membranes of ST-treated HeLa-Cx43 cells, several dye uptake methods using carboxyfluorescein and propidium iodide were employed. While the number of fluorescent cells did not change in HeLa-WT and HeLa-DeltaCT cells with ST treatment, the number of fluorescent HeLa-Cx43 cells increased more than ten-fold. These results indicate that the increases in cell surface Cx43 seen with immunofluorescence and the elevated hemichannel activities detected with dye uptake could help explain the accelerated cell death observed in ST-treated HeLa-Cx43 cells.  相似文献   

6.
To address the role of gap junction hemichannels in apoptosis, the cell death induced by staurosporine (ST) was evaluated in wild type HeLa cells (HeLa-WT) and transfectants expressing either full-length connexin43 (HeLa-Cx43) or a C-terminal truncation of Cx43 (HeLa-ΔCT). Cell death was measured with fluorescence-activated cell sorting (FACS), both DNA and nuclear fragmentation methods and assays for PARP and caspase 3. The ST-mediated cell death was accelerated in HeLa-Cx43 cells compared to HeLa-WT and HeLa-ΔCT. To determine why HeLa-Cx43 cells were more susceptible to ST, the phosphorylation state and the localization of Cx43 protein within cells were examined using specific Cx43 antibodies. The phosphorylated forms of Cx43 were sharply reduced in HeLa-Cx43 cells treated with ST. Moreover, in ST-treated HeLa-Cx43 cells, Cx43 was mainly observed at the cell surface. In contrast, the truncated form of Cx43 found in HeLa-ΔCT cells, which lacks many of the normal phosphorylation sites, was observed in the cytosol with ST treatment. To examine the hemichannels in the plasma membranes of ST-treated HeLa-Cx43 cells, several dye uptake methods using carboxyfluorescein and propidium iodide were employed. While the number of fluorescent cells did not change in HeLa-WT and HeLa-ΔCT cells with ST treatment, the number of fluorescent HeLa-Cx43 cells increased more than ten-fold. These results indicate that the increases in cell surface Cx43 seen with immunofluorescence and the elevated hemichannel activities detected with dye uptake could help explain the accelerated cell death observed in ST-treated HeLa-Cx43 cells.  相似文献   

7.
Although a functional pore domain is required for connexin 37 (Cx37)–mediated suppression of rat insulinoma (Rin) cell proliferation, it is unknown whether functional hemichannels would be sufficient or if Cx37 gap junction channels are required for growth suppression. To test this possibility, we targeted extracellular loop cysteines for mutation, expecting that the mutated protein would retain hemichannel, but not gap junction channel, functionality. Cysteines at positions 61 and 65 in the first extracellular loop of Cx37 were mutated to alanine and the mutant protein (Cx37-C61,65A) expressed in Rin cells. Although the resulting iRin37-C61,65A cells expressed the mutant protein comparably to Cx37 wild-type (Cx37-WT)–expressing Rin cells (iRin37), Cx37-C61,65A expression did not suppress the proliferation of Rin cells. As expected, iRin37-C61,65A cells did not form functional gap junction channels. However, functional hemichannels also could not be detected in iRin37-C61,65A cells by either dye uptake or electrophysiological approaches. Thus, failure of Cx37-C61,65A to suppress the proliferation of Rin cells is consistent with previous data demonstrating the importance of channel functionality to Cx37’s growth-suppressive function. Moreover, failure of the Cx37-C61,65A hemichannel to function, even in low external calcium, emphasizes the importance of extracellular loop cysteines not only in hemichannel docking but also in determining the ability of the hemichannel to adopt a closed configuration that can open in response to triggers, such as low external calcium, effective at opening Cx37-WT hemichannels.  相似文献   

8.
The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.  相似文献   

9.
《The Journal of cell biology》1994,127(6):1895-1905
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level.  相似文献   

10.
Mechanosensing bone osteocytes express large amounts of connexin (Cx)43, the component of gap junctions; yet, gap junctions are only active at the small tips of their dendritic processes, suggesting another function for Cx43. Both primary osteocytes and the osteocyte-like MLO-Y4 cells respond to fluid flow shear stress by releasing intracellular prostaglandin E2 (PGE2). Cells plated at lower densities release more PGE2 than cells plated at higher densities. This response was significantly reduced by antisense to Cx43 and by the gap junction and hemichannel inhibitors 18 beta-glycyrrhetinic acid and carbenoxolone, even in cells without physical contact, suggesting the involvement of Cx43-hemichannels. Inhibitors of other channels, such as the purinergic receptor P2X7 and the prostaglandin transporter PGT, had no effect on PGE2 release. Cell surface biotinylation analysis showed that surface expression of Cx43 was increased by shear stress. Together, these results suggest fluid flow shear stress induces the translocation of Cx43 to the membrane surface and that unapposed hemichannels formed by Cx43 serve as a novel portal for the release of PGE2 in response to mechanical strain.  相似文献   

11.
Connexin43 (Cx43) is the most ubiquitous gap junction protein in the human body and is essential for cell-to-cell communication in a variety of organs and organ systems. As a result, Cx43 is responsible for mediating both electrical and chemical signals, passing dissolved solutes and small signaling molecules between cells in a coordinated fashion. Here, we explore the electrophysiological properties of hemichannels formed from Cx43 and Cx43 fused to eGFP (Cx43eGFP) and their interactions in a planar lipid membrane (BLM). Unlike in vivo patch clamp experiments, Cx43 was purified and isolated from other membrane constituents allowing elucidation of individual protein responses to various electrical and chemical stimuli. Using this system, we examined hemichannel electrophysiology and the roles of several well-known gap junction blockers, namely: lanthanum, heptanol, carbenoxalone and lindane. We also observed a critical number of hemichannels required for an accelerated conductance increase, an emergent electrical signature indicative of plaque formation.  相似文献   

12.
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

13.
Connexin-based gap junction hemichannels: gating mechanisms   总被引:13,自引:0,他引:13  
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

14.
Phosphorylation of the gap junction protein connexin 43 (Cx43) by protein kinase C (PKC) decreases dye coupling in many cell types. We report an investigation of the regulation by PKC of Cx43 gap junctional hemichannels (GJH) expressed in Xenopus laevis oocytes. The activity of GJH was assessed from the uptake of hydrophilic fluorescent probes. PKC inhibitors increased probe uptake in isolated oocytes expressing recombinant Cx43, indicating that the regulatory effect occurs at the hemichannel level. We identified by mutational analysis the carboxy-terminal (CT) domain sequences involved in this response. We found that 1) Ser368 is responsible for the regulation of Cx43 GJH solute permeability by PKC-mediated phosphorylation, 2) CT domain residues 253-270 and 288-359 are not necessary for the effect of PKC, and 3) the prolinerich CT region is not involved in the effect of phosphorylation by PKC. Our results demonstrate that Ser368 (but not Ser372) is involved in the regulation of Cx43 solute permeability by PKC-mediated phosphorylation, and we conclude that different molecular mechanisms underlie the regulation of Cx43 by intracellular pH and PKC-mediated phosphorylation. protein kinase C blocker; dye loading; hemichannel  相似文献   

15.
Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are reported to open the hemichannels and thereby create a permeation pathway through the plasma membrane. Cx30 and Cx43 have, in their hemichannel configuration, been proposed to act as ion channels and membrane pathways for different molecules, such as fluorescent dyes, ATP, prostaglandins, and glutamate. Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors and by confounding changes associated with genetically modified animal models. This review attempts to critically assess the gating, inhibition and permeability of astrocytic connexin hemichannels and proposes that connexins in their hemichannel configuration act as gated pores with isoform-specific permeant selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.  相似文献   

16.
Electrophysiological and morphological methods were used to study connexin50 (Cx50) expressed in Xenopus laevis oocytes. Oocytes expressing Cx50 exhibited a new population of intramembrane particles (9.0 nm in diameter) in the plasma membrane. The particles represented hemichannels (connexin hexamers) because (a) their cross-sectional area could accommodate 24 +/- 3 helices, (b) when their density reached 300-400/microm2, they formed complete channels (dodecamers) in single oocytes, and assembled into plaques, and (c) their appearance in the plasma membrane was associated with a whole-cell current, which was activated at low external Ca2+ concentration ([Ca2+]o), and was blocked by octanol and by intracellular acidification. The Cx50 hemichannel density was directly proportional to the magnitude of the Cx50 Ca2+-sensitive current. Measurements of hemichannel density and the Ca2+-sensitive current in the same oocytes suggested that at physiological [Ca2+]o (1-2 mM), hemichannels rarely open. In the cytoplasm, hemichannels were present in approximately 0.1-microm diameter "coated" and in larger 0.2-0.5-microm diameter vesicles. The smaller coated vesicles contained endogenous plasma membrane proteins of the oocyte intermingled with 5-40 Cx50 hemichannels, and were observed to fuse with the plasma membrane. The larger vesicles, which contained Cx50 hemichannels, gap junction channels, and endogenous membrane proteins, originated from invaginations of the plasma membrane, as their lumen was labeled with the extracellular marker peroxidase. The insertion rate of hemichannels into the plasma membrane (80, 000/s), suggested that an average of 4,000 small coated vesicles were inserted every second. However, insertion of hemichannels occurred at a constant plasma membrane area, indicating that insertion by vesicle exocytosis (60-500 microm2 membranes/s) was balanced by plasma membrane endocytosis. These exocytotic and endocytotic rates suggest that the entire plasma membrane of the oocyte is replaced in approximately 24 h.  相似文献   

17.
Osteocytes embedded in the matrix of bone are mechanosensory cells that translate strain into signals and regulate bone remodeling. Our previous studies using osteocyte-like MLO-Y4 cells have shown that fluid flow shear stress (FFSS) increases connexin (Cx) 43 protein expression, prostaglandin E(2) (PGE(2)) release, and intercellular coupling, and PGE(2) is an essential mediator between FFSS and gap junctions. However, the role of Cx43 in the release of PGE(2) in response to FFSS is unknown. Here, the FFSS-loaded MLO-Y4 cells with no or few intercellular channels released significantly more PGE(2) per cell than those cells at higher densities. Antisense Cx43 oligonucleotides and 18 beta-glycyrrhetinic acid, a specific gap junction and hemichannel blocker, significantly reduced PGE(2) release by FFSS at all cell densities tested, especially cells at the lowest density without gap junctions. FFSS, fluid flow-conditioned medium, and PGE(2) increased the activity of dye uptake. Moreover, FFSS induced Cx43 to migrate to the surface of the cell; this surface expressed Cx43 developed resistance to Triton-X-100 solublization. Our results suggest that hemichannels formed by Cx43, instead of intercellular channels, are likely to play a predominant role in the release of intracellular PGE(2) in response to FFSS.  相似文献   

18.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

19.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

20.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号