首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.  相似文献   

2.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

3.
The human mutY homolog (MUTYH) participates in base excision repair (BER), which is critical for repairing oxidized DNA bases and maintaining DNA replication fidelity. The polymorphic AluYb8 insertion in the 15th intron of the MUTYH gene (AluYb8MUTYH) has been shown to associate with an aggregated 8-hydroxy-2′-deoxyguanosine (8-OH-dG) lesion in genomic DNA and to serve as a risk factor for age-related diseases. In this work, we demonstrate that this variant is associated with a significant reduction of the type 1 MUTYH protein that localizes to mitochondria. Notably, this variant affects mitochondrial DNA (mtDNA) maintenance and functional mitochondrial mass in individuals homozygous for the AluYb8MUTYH variant. These findings provide evidence for an association between the AluYb8MUTYH variant and decreased mitochondrial homeostasis and, consequently, contribute to elucidating the roles of the AluYb8MUTYH variant in impairing the mitochondrial base excision repair (mtBER) system and increasing the risk of acquiring an age-related disease.  相似文献   

4.
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.  相似文献   

5.
Aging has been associated with mitochondrial DNA (mtDNA) common deletion (CD). Age changes in the central auditory system are well known to affect speech perception. Base excision repair (BER) is the major type of DNA repair in mitochondria. The current study was designed to investigate potential causative mechanisms of central presbycusis by using a rat mimetic aging model induced by subcutaneous administration of d-galactose (d-gal). Quantitative real-time PCR and Western blotting analyses were performed to identify the mtDNA 4834 bp deletion and selected mitochondrial DNA repair enzymes, DNA polymerase γ (pol γ) and 8-oxoguanine DNA glycosylase (OGG1). Cell apoptosis in the auditory cortex was detected using terminal deoxynucleotidyltransferase mediated UTP nick-end labeling (TUNEL). Our data showed that mtDNA 4834 bp deletion and TUNEL-positive cells were significantly increased and the expression of pol γ and OGG1 were remarkably down-regulated in the auditory cortex in d-gal-treated rats compared to control rats. During aging, increased mtDNA damage likely results from decreased DNA repair capacity in the auditory cortex. DNA repair enzymes such as pol γ and OGG1 may provide novel pharmacological targets to promote DNA repair and rescue the central auditory system in patients with degenerative diseases.  相似文献   

6.
7.
The mitochondrial genome is a matrilineally inherited DNA that encodes numerous essential subunits of the respiratory chain in all metazoans. As such mitochondrial DNA (mtDNA) sequence integrity is vital to organismal survival, but it has a limited cadre of DNA repair activities, primarily base excision repair (BER). We have known that the mtDNA is significantly oxidized by both endogenous and exogenous sources, but this does not lead to the expected preferential formation of transversion mutations, which suggest a robust base excision repair (BER) system. This year, two different groups reported compelling evidence that what was believed to be exclusively nuclear DNA repair polymerase, POLB, is located in the mitochondria and plays a significant role in mitochondrial BER, mtDNA integrity and mitochondrial function. In this commentary, we review the findings and highlight remaining questions for the field.  相似文献   

8.

Background  

DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.  相似文献   

9.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

10.
线粒体DNA复制及其调控   总被引:1,自引:0,他引:1  
从线粒体DNA复制的模型与机制、复制的调控、复制忠实性及其损伤修复3个方面对近年来的研究文献进行了总结.在复制的模型与机制方面,对传统的D环复制的细节有了更深入的了解,新的实验方法的结果显示,在哺乳动物中还存在着链结合单向复制和链结合双向复制2种模型.在线粒体DNA复制的调控方面,近年来研究较多的调控因子主要包括mtDNA聚合酶γ、线粒体单链结合蛋白(mtSSB)、引物酶、解旋酶、连接酶、拓扑异构酶、转录因子mtTFA等,介绍了这些因子的最新研究进展及调控机制;对mtDNA复制时期和拷贝数量调控机制的研究也有突破,确定了Abf2p是mtDNA复制时期与拷贝数目的调控因子.在mtDNA复制的忠实性及其损伤修复研究方面,主要涉及到DNA Polγ的校正功能、错配修复、重组修复、DNA切除修复等,在mtDNA损伤修复中仅存在碱基切除修复机制,缺少核苷酸切除修复机制.  相似文献   

11.
Mitochondrial DNA (mtDNA) is located close to the respiratory chain, a major source of reactive oxygen species (ROS). This proximity makes mtDNA more vulnerable than nuclear DNA to damage by ROS. Therefore, the efficient repair of oxidative lesions in mtDNA is essential for maintaining the stability of the mitochondrial genome. A series of genetic and biochemical studies has indicated that eukaryotic cells, including the model organism Saccharomyces cerevisiae, use several alternative strategies to prevent mutagenesis induced by endogenous oxidative damage to nuclear DNA. However, apart from base excision repair (BER), no other pathways involved in the repair of oxidative damage in mtDNA have been identified. In this study, we have examined mitochondrial mutagenesis in S. cerevisiae cells which lack the activity of the Ogg1 glycosylase, an enzyme playing a crucial role in the removal of 8-oxoG, the most abundant oxidative lesion of DNA. We show that the overall frequency of the mitochondrial oligomycin-resistant (Olir) mutants is increased in the ogg1 strain by about one order of magnitude compared to that of the wild-type strain. Noteworthy, in the mitochondrial oli1 gene, G:C to T:A transversions are generated approximately 50-fold more frequently in the ogg1 mutant relative to the wild-type strain. We also demonstrate that the increased frequency of Olir mutants in the ogg1 strain is markedly reduced by the presence of plasmids encoding Msh1p, a homologue of the bacterial mismatch protein MutS, which specifically functions in mitochondria. This suppression of the mitochondrial mutator phenotype of the ogg1 strain seems to be specific, since overexpression of the mutant allele msh1-R813W failed to exert this effect. Finally, we also show that the increased frequency of Olir mutants arising in an msh1/MSH1 heterozygote grown in glucose-containing medium is further enhanced if the cells are cultivated in glycerol-containing medium, i.e. under conditions when the respiratory chain is fully active. Taken together, these results strongly suggest that MSH1-dependent repair represents a significant back-up to mtBER in the repair of oxidative damage in mtDNA.  相似文献   

12.
Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch-binding and recognition steps.  相似文献   

13.
Emerging evidence suggests that mitochondrial (mt) DNA damage may be a trigger for apoptosis in oxidant-challenged pulmonary artery endothelial cells (PAECs). Understanding the rate-limiting determinants of mtDNA repair may point to new targets for intervention in acute lung injury. The base excision repair (BER) pathway is the only pathway for oxidative damage repair in mtDNA. One of the key BER enzymes is Ogg1, which excises the base oxidation product 8-oxoguanine. Previously we demonstrated that overexpression of mitochondrially targeted Ogg1 in PAECs attenuated apoptosis induced by xanthine oxidase (XO) treatment. To test the idea that Ogg1 is a potentially rate-limiting BER determinant protecting cells from oxidant-mediated death, PAECs transfected with siRNA to Ogg1 were challenged with XO and the extent of mitochondrial and nuclear DNA damage was determined along with indices of apoptosis. Transfected cells demonstrated significantly reduced Ogg1 activity, which was accompanied by delayed repair of XO-induced mtDNA damage and linked to increased XO-mediated apoptosis. The nuclear genome was undamaged by XO in either control PAECs or cells depleted of Ogg1. These observations suggest that Ogg1 plays a critical and possibly rate-limiting role in defending PAECs from oxidant-induced apoptosis by limiting the persistence of oxidative damage in the mitochondrial genome.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H(2)O(2)-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria.  相似文献   

15.
16.
The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.  相似文献   

17.
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.  相似文献   

18.
Reactive oxygen species (ROS) have been implicated as one of the agents responsible for many neurodegenerative diseases. A critical target for ROS is DNA. Most oxidative stress-induced DNA damage in the nucleus and mitochondria is removed by the base excision repair pathway. Apn1 is a yeast enzyme in this pathway which possesses a wider substrate specificity and greater enzyme activity than its mammalian counterpart for removing DNA damage, making it a good therapeutic candidate. For this study we targeted Apn1 to mitochondria in a neuronal cell line derived from the substantia nigra by using a mitochondrial targeting signal (MTS) in an effort to hasten the removal of DNA damage and thereby protect these cells. We found that following oxidative stress, mitochondrial DNA (mtDNA) was repaired more efficiently in cells containing Apn1 with the MTS than controls. There was no difference in nuclear repair. However, cells that expressed Apn1 without the MTS showed enhanced repair of both nuclear and mtDNA. Both Apn1-expressing cells were more resistant to cell death following oxidative stress compared with controls. Therefore, these results reveal that the expression of Apn1 in neurons may be of potential therapeutic benefit for treating patients with specific neurodegenerative diseases.  相似文献   

19.
Mitochondrial DNA (mtDNA) contains high levels of oxidative damage relative to nuclear DNA. A full, functional DNA base excision repair (BER) pathway is present in mitochondria, to repair oxidative DNA lesions. However, little is known about the organization of this pathway within mitochondria. Here, we provide evidence that the mitochondrial BER proteins are not freely soluble, but strongly associated with an inner membrane-containing particulate fraction. Uracil DNA glycosylase, oxoguanine DNA glycosylase and DNA polymerase γ activities all co-sedimented with this particulate fraction and were not dissociated from it by detergent (0.1% or 1.0% NP40) treatment. The particulate associations of these activities were not due to their binding mtDNA, which is itself associated with the inner membrane, as they also localized to the particulate fraction of mitochondria from 143B (TK) ρ0 cells, which lack mtDNA. However, all of the BER activities were at least partially solubilized from the particulate fraction by treatment with 150–300 mM NaCl, suggesting that electrostatic interactions are involved in the association. The biological implications of the apparent immobilization of BER proteins are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号