首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were 'treated' with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

2.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

3.
Cerebral aneurysm is an irreversible dilatation causing intracranial haemorrhage with severe complications. It is assumed that the biomechanical factor plays a significant role in the development of cerebral aneurysm. However, reports on the correlations between the formation of intraluminal thrombus and the flow pattern, wall shear stress (WSS) distribution of the cerebral aneurysm as well as wall compliance are still limited. In this research, patient-specific numerical simulation was carried out for three cerebral aneurysms based on magnetic resonance imaging (MRI) data-sets. The interaction between pulsatile blood and aneurysm wall was taken into account. The biomechanical behaviour of cerebral aneurysm and its relation with the formation of intraluminal thrombus was studied systematically. The results of the numerical simulation indicated that the region of low blood flow velocity and the region of swirling recirculation were nearly coincident with each other. Besides, there was a significant correlation between the slow swirling flow and the location of thrombus deposition. Excessively low WSS was also found to have strong association with the regions of thrombus formation. Moreover, the relationship between cerebral aneurysm compliance and thrombus deposition was discovered. The patient-specific modelling study based on fluid–structure interaction) may provide a basis for future investigation on the prediction of thrombus formation in cerebral aneurysm.  相似文献   

4.
Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper a nonlinear three-dimensional thick-wall model with fluid-wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress-strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier-Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid-wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.  相似文献   

5.
In experiments turbulence has previously been shown to occur in intracranial aneurysms. The effects of turbulence induced oscillatory wall stresses could be of great importance in understanding aneurysm rupture. To investigate the effects of turbulence on blood flow in an intracranial aneurysm, we performed a high resolution computational fluid dynamics (CFD) simulation in a patient specific middle cerebral artery (MCA) aneurysm using a realistic, pulsatile inflow velocity. The flow showed transition to turbulence just after peak systole, before relaminarization occurred during diastole. The turbulent structures greatly affected both the frequency of change of wall shear stress (WSS) direction and WSS magnitude, which reached a maximum value of 41.5Pa. The recorded frequencies were predominantly in the range of 1-500Hz. The current study confirms, through properly resolved CFD simulations that turbulence can occur in intracranial aneurysms.  相似文献   

6.
7.
《Journal of biomechanics》2014,47(15):3695-3703
Most computational fluid dynamic (CFD) simulations of aneurysm hemodynamics assume constant (Newtonian) viscosity, even though blood demonstrates shear-thinning (non-Newtonian) behavior. We sought to evaluate the effect of this simplifying assumption on hemodynamic forces within cerebral aneurysms, especially in regions of low wall shear stress, which are associated with rupture. CFD analysis was performed for both viscosity models using 3D rotational angiography volumes obtained for 26 sidewall aneurysms (12 with blebs, 12 ruptured), and parametric models incorporating blebs at different locations (inflow/outflow zone). Mean and lowest 5% values of time averaged wall shear stress (TAWSS) computed over the dome were compared using Wilcoxon rank-sum test. Newtonian modeling not only resulted in higher aneurysmal TAWSS, specifically in areas of low flow and blebs, but also showed no difference between aneurysms with or without blebs. In contrast, for non-Newtonian analysis, bleb-bearing aneurysms showed significantly lower 5% TAWSS compared to those without (p=0.005), despite no significant difference in mean dome TAWSS (p=0.32). Non-Newtonian modeling also accentuated the differences in dome TAWSS between ruptured and unruptured aneurysms (p<0.001). Parametric models further confirmed that realistic non-Newtonian viscosity resulted in lower bleb TAWSS and higher focal viscosity, especially when located in the outflow zone. The results show that adopting shear-thinning non-Newtonian blood viscosity in CFD simulations of intracranial aneurysms uncovered hemodynamic differences induced by bleb presence on aneurysmal surfaces, and significantly improved discriminant statistics used in risk stratification. These findings underline the possible implications of using a realistic model of blood viscosity in predictive computational hemodynamics.  相似文献   

8.
The prediction of conditions that may result in thrombus formation is a useful application of computational fluid dynamics. A number of techniques exist, based on the consideration of wall shear stress and regions of low blood flow; however, no clear guideline exists for the best practice of their use. In this paper, the sensitivity of each parameter and the specific mechanical forces are explained, before the optimal indicator of thrombosis risk is outlined. An extracorporeal access device cavity provides a suitable geometry to test the methodology. The recommended method for thrombus prediction considers areas with a calculated residence time (RT) and shear strain rate (SSR) thresholds, here set to RT>1 and SSR < 10 s? 1. Evidence of thrombosis was found for physiological waveforms with an absence of reverse flow, which is expected to ‘wash out’ the cavity. The predicted thrombosis sites compare well with evidence collected from explanted devices.  相似文献   

9.

False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid–structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection–diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young’s modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.

  相似文献   

10.
A risk-factor criterion, based on near-wall haemodynamic conditions, for the assessment of vascular pathology risk is developed and tested. This criterion has its foundation on experimentally observed vascular wall responses to oscillatory and swirling wall shear stress patterns and is applied to the results of computational simulations. We test this model on two anatomically accurate vascular segments, where pathologies are either commonplace or have already been developed, i.e. a healthy carotid bifurcation and a cerebral fusiform aneurysm. In the case of the former, the risk-assessment criterion predicts the emergence of atherosclerosis of the same locations that the disease is usually encountered. In the case of the latter, the risk factor shows increased probability for the appearance of secondary, “baby”, aneurysms at certain locations.  相似文献   

11.

In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50 h Re m h 300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure ( p w ), wall shear stress ( w ), Wall Shear Stress Gradient (WSSG), time-average wall shear stress ( w *), and time-average Wall Shear Stress Gradient WSSG *. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

12.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

13.
Flow instability has emerged as a new hemodynamic metric hypothesized to have potential value in assessing the rupture risk of cerebral aneurysms. However, diverse findings have been reported in the literature. In the present study, high-resolution hemodynamic simulations were performed retrospectively on 35 aneurysms (10 ruptured & 25 unruptured) located at the internal carotid artery (ICA). Simulated hemodynamic parameters were statistically compared between the ruptured and unruptured aneurysms, with emphasis on examining the correlation of flow instability with the status of aneurysm rupture. Pronounced flow instability was detected in 20% (2 out of 10) of the ruptured aneurysms, whereas in 44% (11 out of 25) of the unruptured aneurysms. Statistically, the flow instability metric (quantified by the temporally and spatially averaged fluctuating kinetic energy over the aneurysm sac) did not differ significantly between the ruptured and unruptured aneurysms. In contrast, low wall shear stress area (LSA) and pressure loss coefficient (PLC) exhibited significant correlations with the status of aneurysm rupture. In conclusion, the present study suggests that the presence of flow instability may not correlate closely with the status of aneurysm rupture, at least for ICA aneurysms. On the other hand, the retrospective nature of the study and the small sample size may have to some extent compromised the reliability of the conclusion, and therefore large-scale prospective studies would be needed to further address the issue.  相似文献   

14.
As one important step in the investigation of the mechanical factors that lead to rupture of abdominal aortic aneurysms, flow fields and flow-induced wall stress distributions have been investigated in model aneurysms under pulsatile flow conditions simulating the in vivo aorta at rest. Vortex pattern emergence and evolution were evaluated, and conditions for flow stability were delineated. Systolic flow was found to be forward-directed throughout the bulge in all the models, regardless of size. Vortices appeared in the bulge initially during deceleration from systole, then expanded during the retrograde flow phase. The complexity of the vortex field depended strongly on bulge diameter In every model, the maximum shear stress occurred at peak systole at the distal bulge end, with the greatest shear stress developing in a model corresponding to a 4.3 cm AAA in vivo. Although the smallest models exhibited stable flow throughout the cycle, flow in the larger models became increasingly unstable as bulge size increased, with strong amplification of instability in the distal half of the bulge. These data suggest that larger aneurysms in vivo may be subject to more frequent and intense turbulence than smaller aneurysms. Concomitantly, increased turbulence may contribute significantly to wall stress magnitude and thereby to risk of rupture.  相似文献   

15.
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup.  相似文献   

16.
Morphometric study of vascular bifurcations and capillaries in biceps femoris artery basin was performed in 2-week old, 1-month old, and adult Wistar rats. Proceeding from the results, the blood tree was digitally reconstructed, and the main haemodynamic parameters in digital simulation were evaluated in this vascular bed: the blood flow velocity, wall shear stress, drop of perfusion pressure, and resistance. The comparison with a similar study of cerebral vascular bed revealed peculiarities of the vascular bed formation and intraorgan haemodynamics in these organs.  相似文献   

17.
Diabetes mellitus (DM) is a predisposing risk factor leading to macrovascular diseases. Changes in haemodynamics of the diabetic aortas remain largely unclear and relevant computational analyses are lacking in the literature. Ten adult rabbits (1.6–2.2 kg) were collected and the type I diabetic rabbit model was induced by injection of alloxan. A total of five control and five diabetic rabbit aortas were considered for subsequent numerical simulation. The CT scanning was performed to reconstruct three-dimensional model of the individual rabbit descending aorta. The flow velocity waveforms were measured by ultrasound machine and were set to be the inlet boundary conditions. The reconstructed aortas were then imported into ANSYS to perform mesh generation and computational analysis. Results showed that the distributions of haemodynamic indicators time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and transverse wall shear stress (transWSS) in the non-diabetic rabbit aortas were similar to those in the diabetic rabbit aortas. However, the mean values of TAWSS and transWSS in the non-diabetic rabbit aortas were significantly higher than those values in the diabetic rabbit aortas (TAWSS: p = 0.04; transWSS: p = 0.02). The back of right renal artery tended to have high OSI in both the non-diabetic and the diabetic rabbit aortas. Notably, the regions with high OSI tended to have intense disturbed flow and low TAWSS in the most diabetic rabbit aortas. The results suggest that diabetes leads to changes in haemodynamic parameters in the rabbit aortas. In particular, the lower TAWSS and the higher OSI within the diabetic aortas may further contribute to aortic wall remodeling.  相似文献   

18.
Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120?Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.  相似文献   

19.
Kawasaki disease (KD) is the leading cause of acquired heart disease in children and can result in life-threatening coronary artery aneurysms in up to 25 % of patients. These aneurysms put patients at risk of thrombus formation, myocardial infarction, and sudden death. Clinicians must therefore decide which patients should be treated with anticoagulant medication, and/or surgical or percutaneous intervention. Current recommendations regarding initiation of anticoagulant therapy are based on anatomy alone with historical data suggesting that patients with aneurysms \(\ge \) 8 mm are at greatest risk of thrombosis. Given the multitude of variables that influence thrombus formation, we postulated that hemodynamic data derived from patient-specific simulations would more accurately predict risk of thrombosis than maximum diameter alone. Patient-specific blood flow simulations were performed on five KD patients with aneurysms and one KD patient with normal coronary arteries. Key hemodynamic and geometric parameters, including wall shear stress, particle residence time, and shape indices, were extracted from the models and simulations and compared with clinical outcomes. Preliminary fluid structure interaction simulations with radial expansion were performed, revealing modest differences in wall shear stress compared to the rigid wall case. Simulations provide compelling evidence that hemodynamic parameters may be a more accurate predictor of thrombotic risk than aneurysm diameter alone and motivate the need for follow-up studies with a larger cohort. These results suggest that a clinical index incorporating hemodynamic information be used in the future to select patients for anticoagulant therapy.  相似文献   

20.
Thoracic endovascular aortic repair (TEVAR) has been introduced as a less invasive approach to the treatment of thoracic aortic aneurysm (TAA). However, the effectiveness of TEVAR in the treatment of TAA is often limited due to the complex anatomy of aortic arch. Flow preservation at the three supra-aortic branches further increases the overall technical difficulty. This study proposes a novel stent graft design with slit perforations that can positively alter the hemodynamics at the aortic arch while maintaining blood flow to supra-aortic branches. We carried out a computational fluid dynamic (CFD) analysis to evaluate flow characteristics near stented aortic arch in simplified TAA models, followed by in-vitro experiments using particle image velocimetry (PIV) in a mock circulatory loop. The hemodynamics result was studied in terms of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), and endothelial cell action potential (ECAP). The results showed that the stent graft with slit perforations can reduce the disturbed flow region considerably. Furthermore, the effect of the slits on flow preservation to the supra-aortic branches was simulated and compared with experimental results. The effectiveness of the stent graft with slit perforations in preserving flow to the branches was demonstrated by both simulated and experimental results. Low TAWSS and elevated ECAP were observed in the aortic arch aneurysm after the placement of the stent graft with slits, implying the potential of thrombus formation in the aneurysm. On the other hand, the effects of the stent grafts with full-slit design and half-slit design on the shear stress did not differ significantly. The present analysis indicated that not only could the stent graft with slit perforations shield the aneurysm from rupture, but also it resulted in a favorable environment for thrombus that can contribute to the shrinkage of the aneurysm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号