首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present experiment tested our hypothesis that the subjects will wear more clothing in the evening cold under the influence of bright light exposure in the late afternoon and evening. Nine young female adults participated in this study. Light intensity was controlled from 9:00 h to 16:00 h at 100 lx, and from 16:00 h to 20:30 h either at 3000 lx in the bright light (Brighte) or at 10 lx in the dim light ("Dim") conditions. Light intensity was maintained at 10 lx from 20:30 h to 23:00 h. They were instructed to wear garments to maintain themselves to feel comfortable during the fall of ambient temperature from 30 degrees C to 15 degrees C (21:00 h - 22:00 h) and its constant temperature at 15 degrees C (22:00 h - 23:00 h). Most subjects dressed in heavier clothing in the "Bright" than in the "Dim" conditions. The evening fall of core temperature was significantly smaller and the urinary melatonin secretion was significantly lower in the "Bright" condition, suggesting that the set-point of core temperature has been set at a higher level during the evening and at night, being influenced by the less amount of melatonin secretion. Thus, it is concluded that the late afternoon and evening bright light exposure could accelerate the dressing behavior in the evening cold.  相似文献   

2.
1. The study investigated the effect of exposure to 3-h bright light (2500 lx) or dim light (200 lx) just prior to taking a hot bath upon thermophysiological responses during the 1-h bath (at 38.5°C water temperature). 2. Core and forehead skin temperature increases during the bath were significantly lower after bright than after dim light exposure. 3. Heart rate during the bath was significantly lower after exposure to bright light than dim light. 4. These results are discussed in terms of a reduced set-point of core temperature due to a probable higher secretion of melatonin under the bright light condition.  相似文献   

3.
The effects after exposure to two different light intensities (dim, 50 lx and bright, 5000 lx) on thermoregulatory responses during exercise in a climatic chamber (27 degrees C, 60% relative humidity) were studied in nine untrained female subjects, aged 19-22 years. The subjects were in either the dim or bright light intensities from 0600 hours to 1200 hours. They were then instructed to exercise on a cycle ergometer at an intensity of 60% maximal oxygen uptake from 1200 hours to 1300 hours in a light intensity of 500 Ix. The main results can be summarized as follows. Firstly, exercise-induced increases of core temperature were significantly smaller, after exposure to the bright than after the dim light intensities, although both tests were performed in the same light intensity. Secondly, body mass loss after exercise was significantly greater after exposure to the bright light intensity. Thirdly, an increase in salivary lactic acid during exercise was significantly lower after the bright intensity. Fourthly although the salivary melatonin level was not different between the two light intensities both before and after the exercise, it increased significantly during exercise only after the bright intensity. These results are discussed in terms of the establishment of a lower set-point in the core temperature after exposure to a bright light intensity.  相似文献   

4.
This study was conducted to investigate how different levels of illumination below 1,000 lx would affect the autonomic and behavioral temperature regulation of humans. Seven healthy college-aged women (20+/-0 years) volunteered to participate in this study. They were exposed to a temperature of 26 degrees C in 320 lx for 30 min ('Equilibrium') followed by 700 lx or 70 lx for 30 min (stage 1). After stage 1, they were exposed to 20 degrees C for 30 min in the same illumination as in stage 1 (stage 2). In stage 2 the subjects were instructed to select and wear the clothing they needed for their thermal comfort. The data obtained were analyzed by paired t-test and repeated measures of analysis of variance. Forearm skin blood flow tended to remain steady in 700 lx but decreased markedly in 70 lx in stage 1. There were no significant differences between subjective thermal responses of the subjects experiencing 700 lx or 70 lx in both stages although the subjects felt cooler in stage 2 than in stage 1. The subjects were likely to prefer wearing heavier clothing in 70 lx than in 700 lx. It was concluded that vasoconstriction in the upper limbs occurred more strongly in dim light, which might result in different clothing preferences in a cool environment from those associated with brighter light intensity.  相似文献   

5.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00-15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15-0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04-0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30-06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00-15:00) could enhance parasympathetic activity around midnight.  相似文献   

6.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00–15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15–0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04–0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30–06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00–15:00) could enhance parasympathetic activity around midnight.  相似文献   

7.
The present study was conducted to know the effects of different light intensities exposed during daytime for several hours on melatonin excreting rate in urine and tympanic temperature. Eleven healthy female subjects were exposed to bright light of 6000 lx (Bright) or dim light of 100 lx (Dim) during daytime from 09:00 h to 13:30 h, and then the light condition was kept at 100 lx until the end of test at 14:30 h. The urinary samples were collected from 10:00 h to 14:30 h every 1.5 hours, and melatonin excreting rate in urine was measured by enzyme immunoassay. Melatonin excreting rate in urine was significantly higher in Bright than in Dim at 11:30 h and 14:30 h, and not significant but at high level at 13:00 h (p <0.07). Moreover, average tympanic temperatures were significantly lower in Bright than in Dim from 11:43 h to 14:30 h. These results showed that the bright light exposure during daytime could reduce tympanic temperature, which might result from the increase of melatonin level.  相似文献   

8.
 The present study investigates the effect on thympanic temperature of exposure to different light intensities for several hours during the daytime. Nine healthy young adult volunteers (two male, seven female) were exposed to bright light of 4000 lx or dim light of 100 lx during the daytime from 0930 to 1800 hours; the light condition was then kept at 100 lx for a further hour. Tympanic temperature was measured continuously at a neutral condition (28° C, 60% relative humidity) from 1000 to 1800 hours. Urinary samples were collected from 1100 to 1900 hours every 2 h, and melatonin excretion rate was measured by enzyme immunoassay. Of nine subjects, six showed clearly lower tympanic temperatures in the bright compared with the dim condition from 1400 to 1800 hours. Average tympanic temperatures were significantly lower in the bright than in the dim condition from 1645 to 1800 hours. Melatonin excretion rate tended to be higher in the bright than in the dim condition. It was concluded that exposure to bright light of 4000 lx during the daytime for several hours could reduce tympanic temperature, compared with that measured in dim light of 100 lx. Received: 22 January 1997 / Revised: 5 April 1997 / Accepted: 26 June 1997  相似文献   

9.
ABSTRACT

Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.  相似文献   

10.
Recent studies show that bright and dim light intensities during the daytime have important regulatory functions. Our present study was performed to evaluate the effect of exposure to different light intensities during the morning and evening on salivary secretion and its sodium concentration. The study involved 6 healthy, female volunteers who were exposed to dim light (100 lx) from 7:00 to 17:00 and to bright light (3000 lx) from 17:00 to 23:00 one day, and to bright light (3000 lx) from 7:00 to 17:00 and dim light (100 lx) from 17:00 to 23:00 on the next day. We collected salivary samples every 10 minutes during 2 hours in the morning and in the evening by means of a Lashley cup. Saliva secretion was stimulated by sweet candy. The amount of saliva secreted was significantly greater in the morning under bright light exposure, while it was significantly greater in the evening under dim light exposure. We discuss these findings in terms of changes in activity of the parasympathetic nervous system (PNS) and sympathetic (SNS) nervous system produced by exposure to different light intensities at different times of the day.  相似文献   

11.
Core temperature (tympanic and rectal temperatures) is lowered for several hours under diurnal bright light exposure and its evening fall is inhibited under evening bright light exposure. Melatonin may be involved in the behavior of these core temperatures. Diurnal bright light exposure for several hours may make dressing behavior and thermal sensibility in the evening cold slower and dull, compared with diurnal dim light exposure. On the contrary, evening bright light exposure for several hours may make the dressing behavior and thermal sensibility in the evening cold quicker and sharper, compared with evening dim light exposure. The underlying physiological mechanisms for these findings are that the thermoregulatory set-point would be reduced more markedly in the evening under the influence of higher elevation of melatonin under the diurnal bright light exposure, and its evening decline would be inhibited by suppression of the nocturnal rise of melatonin under evening bright light exposure.  相似文献   

12.
This article presents our recent studies on the effects of color temperature on the taste sense and the influence of color temperature on bright light exposure during night rest period. Ten male Japanese and ten male Chinese were exposed to four illumination conditions (200, 1500 lx x 3000, 7500 K). Their taste threshold of four common tastes and amount of saliva were measured. It was found in both Japanese and Chinese subjects that sensitivities to sweet and bitter taste were decreased under the lower illuminance condition. Under the lower color temperature condition, sensitivity to bitter taste in Japanese and sweet taste in Chinese were decreased. Secretion of saliva increased under the lower illuminance condition in both Japanese and Chinese. Only in Chinese subjects, secretion of saliva increased under the lower color temperature condition. In a separate experiment, six male Japanese students were subjected to bright light exposure during a night rest period. They performed a mental task from 23:00 h till 02:00 h, and took a rest from 00:00 h to 01:00 h. During the rest period they were exposed to bright light (3000 lx) of three different color temperatures: 3000 K, 5000 K, and 7000 K. After exposure to bright light of 3000 K but not at other color temperatures, the EEG alpha1 band ratio and the beta band ratio at 02:00 h were higher and lower, respectively, than that at 01:00 h. These findings indicated that lower color temperature bright light exposure during a night rest break led to a reduction of subjects' arousal level during the subsequent work. Herein, we discuss these results from the viewpoint of physiological anthropology.  相似文献   

13.
We investigated with eight healthy females if 8 hr diurnal (0700 to 1500 h) bright rather than dim light (5,000 vs. 80 lx) influenced urine volume. Environmental illuminance was made identical at all other times besides 07:00 to 15:00 h. The participants spent time at strictly regulated schedules in a bioclimatic chamber (26 degrees C, relative humidity 60%) for 57 h. Blood was drawn (2 ml) just before lunch in order to calculate Creatinine clearance (Ccr). Urine volume was significantly higher during wakefulness and the 8-h sleep period with bright rather than dim light. Ccr was significantly higher after bright light. The results were discussed in terms of suppression of the sympathetic nerve system under the influence of diurnal bright light exposure. We also discussed these in terms of physiological polymorphisms.  相似文献   

14.
The aim of our present study was to establish if there are any changes in core temperature and plasma glucose concentration during exposure to bright (5000 lx) and dim (100 lx) light. Ten healthy women (age: 19.6 ± 1.66 years) were studied in climatic chamber in which ambient temperature and relative humidity were maintained at 26°C and 60% RH, respectively. Rectal temperature was measured every 5 min and blood samples for determination of glucose were collected every 2 h. Each participant took part in both sessions in bright light and dim light conditions on different days with an interval of at least 1 day. Our results have shown that glucose concentration increases in bright light conditions as compared to dim light conditions but it remains within the normal range values for healthy subjects. On the other hand, there is a slight but significant decrease in rectal temperature in bright light in comparison to dim light conditions. The findings showing the decreased rectal temperature with concomitant increase in glucose concentration observed in bright light conditions might be explained by the mechanism involving melatonin action as shown previously by Aizawa and Tokura (1999).  相似文献   

15.
The aim of our present study was to establish if there are any changes in core temperature and plasma glucose concentration during exposure to bright (5000 lx) and dim (100 lx) light. Ten healthy women (age: 19.6 ± 1.66 years) were studied in climatic chamber in which ambient temperature and relative humidity were maintained at 26°C and 60% RH, respectively. Rectal temperature was measured every 5 min and blood samples for determination of glucose were collected every 2 h. Each participant took part in both sessions in bright light and dim light conditions on different days with an interval of at least 1 day. Our results have shown that glucose concentration increases in bright light conditions as compared to dim light conditions but it remains within the normal range values for healthy subjects. On the other hand, there is a slight but significant decrease in rectal temperature in bright light in comparison to dim light conditions. The findings showing the decreased rectal temperature with concomitant increase in glucose concentration observed in bright light conditions might be explained by the mechanism involving melatonin action as shown previously by Aizawa and Tokura (1999).  相似文献   

16.
1. 1. The study aimed at knowing whether thermal sensation during afternoon cool exposure could be influenced by bright light (4000 lx) or dim light (200 lx) in the forenoon.
2. 2. The subjects felt cooler after exposure to dim light than to bright light.
3. 3. Melatonin in the urine was significantly higher in bright light than in dim light at 10:30 h and at noon.
  相似文献   

17.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

18.
The effects of bright light exposure during the daytime on circadian urinary melatonin and salivary immunoglobulin A (IgA) rhythms were investigated in an environmental chamber controlled at a global temperature of 27°C ± 0.2°C and a relative humidity of 60% ± 5%. Seven diurnally active healthy females were studied twice, in bright and dim light conditions. Bright light of 5000 lux was provided by placing fluorescent lamps about 1 meter in front of the subjects during the daytime exposure (06:30-19:30) from 06:30 on day 1 to 10:30 on day 3. Dim light was controlled at 200 lux, and the subjects were allowed to sleep from 22:30 to 06:30 under both light exposure conditions. Urine and saliva were collected at 4h intervals for assessing melatonin and IgA. Melatonin excretion in the urine was significantly greater during the nighttime (i.e., at 06:30 on day 1 and at 02:30 on day 2) after the bright light condition than during the dim light condition. Furthermore, the concentration and the amount of salivary IgA tended to be higher in the bright light than in the dim light condition, especially during the nighttime. Also, salivary IgA concentration and the total amount secreted in the saliva were significantly positively correlated with urinary melatonin. These results are consistent with the hypothesis that bright light exposure during the daytime enhances the nocturnal melatonin increase and activates the mucosal immune response.  相似文献   

19.
Bright light can influence human psychophysiology instantaneously by inducing endocrine (suppression of melatonin, increasing cortisol levels), other physiological changes (enhancement of core body temperature), and psychological changes (reduction of sleepiness, increase of alertness). Its broad range of action is reflected in the wide field of applications, ranging from optimizing a work environment to treating depressed patients. For optimally applying bright light and understanding its mechanism, it is crucial to know whether its effects depend on the time of day. In this paper, we report the effects of bright light given at two different times of day on psychological and physiological parameters. Twenty-four subjects participated in two experiments (n = 12 each). All subjects were nonsmoking, healthy young males (18-30 yr). In both experiments, subjects were exposed to either bright light (5,000 lux) or dim light <10 lux (control condition) either between 12:00 P.M. and 4:00 P.M. (experiment A) or between midnight and 4:00 A.M. (experiment B). Hourly measurements included salivary cortisol concentrations, electrocardiogram, sleepiness (Karolinska Sleepiness Scale), fatigue, and energy ratings (Visual Analog Scale). Core body temperature was measured continuously throughout the experiments. Bright light had a time-dependent effect on heart rate and core body temperature; i.e., bright light exposure at night, but not in daytime, increased heart rate and enhanced core body temperature. It had no significant effect at all on cortisol. The effect of bright light on the psychological variables was time independent, since nighttime and daytime bright light reduced sleepiness and fatigue significantly and similarly.  相似文献   

20.
We investigated the influence of two different light intensities, dim (100 lx) and bright (5,000 lx), during the daytime on the circadian rhythms of selected acute phase proteins of C‐reactive protein (CRP), α1‐acid glycoprotein (AGP), α1‐antichymotrypsin (ACT), transfferin (TF), α2‐macroglobulin (α2‐m), haptoglobin (HP), and ceruloplasmin (CP). Serum samples were collected from 7 healthy volunteers at 4 h intervals during two separate single 24 h spans during which they were exposed to the respective light intensity conditions. A circadian rhythm was detected only in ACT concentration in the bright light condition. The concentration of ACT, a positive acute phase protein (APP), increased (significantly significant differences in the ACT concentration were detected at 14:00 and 22:00 h) and AGP showed a tendency to be higher under the daytime bright compared to dim light conditions. There were no significant differences between the time point means under daytime dim and bright light conditions for α2‐M, AGP, Tf, Cp, or Hp. The findings suggest that some, but not all, APP may be influenced by the environmental light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号