首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between nontransmembrane domains and the lipid membrane are proposed to modulate activity of many ion channels. In Kir channels, the so-called "slide-helix" is proposed to interact with the lipid headgroups and control channel gating. We examined this possibility directly in a cell-free system consisting of KirBac1.1 reconstituted into pure lipid vesicles. Cysteine substitution of positively charged slide-helix residues (R49C and K57C) leads to loss of channel activity that is rescued by in situ restoration of charge following modification by MTSET(+) or MTSEA(+), but not MTSES(-) or neutral MMTS. Strikingly, activity is also rescued by modification with long-chain alkyl-MTS reagents. Such reagents are expected to partition into, and hence tether the side chain to, the membrane. Systematic scanning reveals additional slide-helix residues that are activated or inhibited following alkyl-MTS modification. A pattern emerges whereby lipid tethering of the N terminus, or C terminus, of the slide-helix, respectively inhibits, or activates, channel activity. This study establishes a critical role of the slide-helix in Kir channel gating, and directly demonstrates that physical interaction of soluble domains with the membrane can control ion channel activity.  相似文献   

2.
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current–voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.  相似文献   

3.
The Ca(2+)-activated K+ (BK) channel alpha-subunit contains many cysteine residues within its large COOH-terminal tail domain. To probe the function of this domain, we examined effects of cysteine-modifying reagents on channel gating. Application of MTSET, MTSES, or NEM to mSlo1 or hSlo1 channels changed the voltage and Ca2+ dependence of steady-state activation. These reagents appear to modify the same cysteines but have different effects on function. MTSET increases I(K) and shifts the G(K)-V relation to more negative voltages, whereas MTSES and NEM shift the G(K)-V in the opposite direction. Steady-state activation was altered in the presence or absence of Ca2+ and at negative potentials where voltage sensors are not activated. Combinations of [Ca2+] and voltage were also identified where P(o) is not changed by cysteine modification. Interpretation of our results in terms of an allosteric model indicate that cysteine modification alters Ca2+ binding and the relative stability of closed and open conformations as well as the coupling of voltage sensor activation and Ca2+ binding and to channel opening. To identify modification-sensitive residues, we examined effects of MTS reagents on mutant channels lacking one or more cysteines. Surprisingly, the effects of MTSES on both voltage- and Ca(2+)-dependent gating were abolished by replacing a single cysteine (C430) with alanine. C430 lies in the RCK1 (regulator of K+ conductance) domain within a series of eight residues that is unique to BK channels. Deletion of these residues shifted the G(K)-V relation by > -80 mV. Thus we have identified a region that appears to strongly influence RCK domain function, but is absent from RCK domains of known structure. C430A did not eliminate effects of MTSET on apparent Ca2+ affinity. However an additional mutation, C615S, in the Haem binding site reduced the effects of MTSET, consistent with a role for this region in Ca2+ binding.  相似文献   

4.
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR’s TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR’s TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR’s gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.  相似文献   

5.
The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1–S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1–R4) can restore current, demonstrating that R1–R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)+ could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES but repels MTSET+. We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET+ modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1–R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.  相似文献   

6.
Winkler HH  Daugherty RM  Audia JP 《Biochemistry》2003,42(43):12562-12569
The contribution of transmembrane region VIII of the Rickettsia prowazekii ATP/ADP translocase to the structure of the water-filled channel through which ATP is transported was evaluated from the accessibility of three hydrophilic, thiol reactive, methanethiosulfonate reagents to a library of 21 single-cysteine substitution mutants expressed in Escherichia coli. A negatively charged reagent (MTSES) and two positively charged reagents (MTSET and MTSEA) were used. Mutants Q323C and G327C did not tolerate cysteine substitution and were almost completely deficient in ATP transport. The remaining mutants exhibited 25-226% of the cysteine-less parent's transport activity. Five patterns of inhibition of ATP transport by the MTS reagents were observed. (i) ATP transport was not inhibited by any of the three MTS reagents in mutants Q321C, F324C, A332C, and L335C and only marginally in F333C. (ii) Transport activity of mutants F322C, Q326C, and A330C was markedly inhibited by all three reagents. (iii) ATP transport was inhibited by MTSEA in only the largest group of mutants (M334C, I336C, G337C, S338C, N339C, I340C, and I341C). (iv) Transport activity was inhibited by MTSET and MTSEA, whereas high concentrations of MTSES were required to inhibit mutants W328C, V329C, and I331C. However, mutant W328C could be inhibited by MTSES in the presence of sub-K(m) concentrations of the substrate. (v) ATP transport by mutant Y325C was unaffected by MTSEA, but inhibited approximately 50% by MTSET and MTSES. Transport of ATP protected mutants (F322C, W328C, V329C, A330C, and I331C) from MTS inhibition. Mutants in the half of TM VIII that is closest to the cytoplasm were not inhibited well by MTSES or MTSET in either whole cells or inside-out vesicles. The results indicate that TM VIII makes a major contribution to the structure of the aqueous translocation pathway, that the accessibility to impermeant thiol reagents is influenced (blocked or stimulated) by substrate, and that there is great variation in accessibility to MTS reagents along the length of TM VIII.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding–induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP–ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents—MTS-glucose, MTS-biotin, and MTS-rhodamine—demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.  相似文献   

8.
MscL is a bacterial mechanosensitive channel that protects the cell from osmotic downshock. We have previously shown that substitution of a residue that resides within the channel pore constriction, MscL's Gly-22, with all other 19 amino acids affects channel gating according to the hydrophobicity of the substitution (). Here, we first make a mild substitution, G22C, and then attach methanethiosulfonate (MTS) reagents to the cysteine under patch clamp. Binding MTS reagents that are positively charged ([2-(trimethylammonium)ethyl] methanethiosulfonate and 2-aminoethyl methanethiosulfonate) or negatively charged (sodium (2-sulfonatoethyl)methanethiosulfonate) causes MscL to gate spontaneously, even when no tension is applied. In contrast, the polar 2-hydroxyethyl methanethiosulfonate halves the threshold, and the hydrophobic methyl methanethiolsulfonate increases the threshold. These observations indicate that residue 22 is in a hydrophobic environment before gating and in a hydrophilic environment during opening to a substate, a finding consistent with our previous study. In addition, we have found that cysteine 22 is accessible to reagents from the cytoplasmic side only when the channel is opened whereas it is accessible from the periplasmic side even in the closed state. These results support the view that exposure of hydrophobic surfaces to a hydrophilic environment during channel opening serves as the barrier to gating.  相似文献   

9.
Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn(2+) coordination. Also, added Zn(2+) or a potent Zn(2+) chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is approximately 200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact alpha-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1--T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn(2+) binding.  相似文献   

10.
Using the substituted-cysteine-accessibility method, we previously showed that a cysteine residue introduced to the Y512 position of CLC-0 was more rapidly modified by a negatively charged methanethiosulfonate (MTS) reagent, 2-sulfonatoethyl MTS (MTSES), than by the positively charged 2-(trimethylammonium)ethyl MTS (MTSET). This result suggests that a positive intrinsic pore potential attracts the negatively charged MTS molecule. In this study, we further test this hypothesis of a positive pore potential in CLC-0 and find that the preference for the negatively charged MTS is diminished significantly in modifying the substituted cysteine at a deeper pore position, E166. To examine this conundrum, we study the rates of MTS inhibitions of the E166C current and those of the control mutant current from E166A. The results suggest that the inhibition of E166C by intracellularly applied MTS reagents is tainted by the modification of an endogenous cysteine, C229, located at the channel's dimer interface. After this endogenous cysteine is mutated, CLC-0 resumes its preference for selecting MTSES in modifying E166C, reconfirming the idea that the pore of CLC-0 is indeed built with a positive intrinsic potential. These experiments also reveal that MTS modification of C229 can inhibit the current of CLC-0 depending on the amino acid placed at position 166.  相似文献   

11.
Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.  相似文献   

12.
In voltage- and cyclic nucleotide-gated ion channels, the amino-acid loop that connects the S5 and S6 transmembrane domains, is a major component of the channel pore. It determines ion selectivity and participates in gating. In the alpha subunit of cyclic nucleotide-gated channels from bovine rod, the pore loop is formed by the residues R345-S371, here called R1-S27. These 24 residues were mutated one by one into a cysteine. Mutant channels were expressed in Xenopus laevis oocytes and currents were recorded from excised membrane patches. The accessibility of the substituted cysteines from both sides of the plasma membrane was tested with the thiol-specific reagents 2-aminoethyl methanethiosulfonate (MTSEA) and [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET). Residues V4C, T20C, and P22C were accessible to MTSET only from the external side of the plasma membrane, and to MTSEA from both sides of the plasma membrane. The effect of MTSEA applied to the inner side of T20C and P22C was prevented by adding 10 mM cysteine to the external side of the plasma membrane. W9C was accessible to MTSET from the internal side only. L7C residue was accessible to internal MTSET, but the inhibition was partial, approximately 50% when the MTS compound was applied in the absence of cGMP and 25% when it was applied in the presence of cGMP, suggesting that this residue is not located inside the pore lumen and that it changes its position during gating. Currents from T15C and T16C mutants were rapidly potentiated by intracellular MTSET. In T16C, a slower partial inhibition took place after the initial potentiation. Current from I17C progressively decayed in inside-out patches. The rundown was accelerated by inwardly applied MTSET. The accessibility results of MTSET indicate a well-defined topology of the channel pore in which residues between L7 and I17 are inwardly accessible, residue G18 and E19 form the narrowest section of the pore, and T20, P21, P22 and V4 are outwardly accessible.  相似文献   

13.
Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis   总被引:6,自引:0,他引:6  
The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.  相似文献   

14.
Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.  相似文献   

15.
We have constructed a series of cysteine-substitution mutants in order to identify residues in the mouse muscle nicotinic acetylcholine receptor (AChR) that are involved in alpha-bungarotoxin (alpha-Bgtx) binding. Following transient expression in HEK 293-derived TSA-201 cells, covalent modification of the introduced cysteines with thiol-specific reagents reveals that alpha subunit residues W187, V188, F189, Y190, and P194 are solvent accessible and are in a position to contribute to the alpha-Bgtx binding site in native receptors. These results with the intact receptor are consistent with NMR studies of an alpha-Bgtx/receptor-dodecapeptide complex [Basus, V., Song., G., and Hawrot, E. (1993) Biochemistry 32, 12290-12298]. We pursued a more detailed analysis of the F189C mutant as this site varies substantially between AChRs that bind Bgtx and certain neuronal AChRs that do not. Treatment of intact cells expressing F189C with either bromoacetylcholine (BrACh) or [2-(trimethylammonium)ethyl] methane-thiosulfonate (MTSET), both methylammonium-containing thiol-modifying reagents with agonist properties, results in a marked decrease ( approximately 55-70%) in the number of alpha-Bgtx binding sites, as measured under saturating conditions. The decrease in sites appears to affect both alpha/gamma and alpha/delta sites to the same extent, as shown for alphaW187C and alphaF189C which were the two mutants examined on this issue. In contrast to the results obtained with MTSET and BrACh, modification with reagents that lack the alkylammonium entity, such as methylmethanethiosulfonate (MMTS), the negatively charged 2-sulfonatoethyl methane-thiosulfonate (MTSES), or the positively charged aminoethyl methylthiosulfonate (MTSEA), has little or no effect on the maximal binding of alpha-Bgtx to the alphaW187C, alphaV188C, or alphaF189C mutant receptors. The striking alkylammonium dependency suggests that an interaction of the tethered modifying group with the negative subsite within the agonist binding domain is primarily responsible for the observed blockade of toxin binding.  相似文献   

16.
We used cysteine-modifying reagents to localize the pH-sensitive gate in the renal inward-rectifier K(+) channel Kir1.1a (ROMK1). Cytoplasmic-side methanethiosulfonate (MTS) reagents blocked K(+) permeation in native Kir1.1 channels, expressed in Xenopus oocytes. Replacement of three cysteines in the N-terminus, C-terminus, and transmembrane domains eliminated this sensitivity to MTS reagents, as measured with inside-out macropatches. Reintroduction of one cysteine at 175-Kir1.1a in the second transmembrane domain allowed blockade of the open channel by the MTS reagents MTSEA, MTSET, and MTSES and by Ag(+). However, closure of the channel by low pH protected it from modification. Cysteine was also introduced into position G223, which is thought to line the cytoplasmic pore of the channel. MTSET blocked G223C in both the open and closed state. In contrast, MTSEA reduced G223C single-channel conductance from 40 to 23 pS but did not produce complete block. We conclude that cytoplasmic acidification induces a conformational change in the channel protein that prevents access of cysteine-modifying reagents, and presumably also K(+) ions, to the transmembrane pore from the cytoplasm. This is consistent with localization of the Kir1.1 pH gate at the helix bundle crossing near the cytoplasmic end of the transmembrane pore.  相似文献   

17.
The positively charged S4 transmembrane segment of voltage-gated channels is thought to function as the voltage sensor by moving charge through the membrane electric field in response to depolarization. Here we studied S4 movements in the mammalian HCN pacemaker channels. Unlike most voltage-gated channel family members that are activated by depolarization, HCN channels are activated by hyperpolarization. We determined the reactivity of the charged sulfhydryl-modifying reagent, MTSET, with substituted cysteine (Cys) residues along the HCN1 S4 segment. Using an HCN1 channel engineered to be MTS resistant except for the chosen S4 Cys substitution, we determined the reactivity of 12 S4 residues to external or internal MTSET application in either the closed or open state of the channel. Cys substitutions in the NH2-terminal half of S4 only reacted with external MTSET; the rates of reactivity were rapid, regardless of whether the channel was open or closed. In contrast, Cys substitutions in the COOH-terminal half of S4 selectively reacted with internal MTSET when the channel was open. In the open state, the boundary between externally and internally accessible residues was remarkably narrow (approximately 3 residues). This suggests that S4 lies in a water-filled gating canal with a very narrow barrier between the external and internal solutions, similar to depolarization-gated channels. However, the pattern of reactivity is incompatible with either classical gating models, which postulate a large translational or rotational movement of S4 within a gating canal, or with a recent model in which S4 forms a peripheral voltage-sensing paddle (with S3b) that moves within the lipid bilayer (the KvAP model). Rather, we suggest that voltage sensing is due to a rearrangement in transmembrane segments surrounding S4, leading to a collapse of an internal gating canal upon channel closure that alters the shape of the membrane field around a relatively static S4 segment.  相似文献   

18.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

19.
Opening and closing of voltage-operated channels requires theinteraction of diverse structural elements. One approach to theidentification of channel domains that participate in gating is tolocate the sites of action of modifiers. Covalent reaction of Kv2.1channels with the neutral, sulfhydryl-specificmethylmethanethiosulfonate (MMTS) caused a slowing of channel gatingwith a predominant effect on the kinetics of activation. These effectswere also obtained after intracellular, but not extracellular,application of a charged MMTS analog. Single channel analysis revealedthat MMTS acted primarily by prolonging the latency to first openingwithout substantially affecting gating transitions after the channelfirst opens and until it inactivates. To localize the channelcysteine(s) with which MMTS reacts, we generatedNH2- and COOH-terminal deletion mutants and a construct in which all three cysteines in transmembrane regions were substituted. Only theNH2-terminal deletion construct gave rise to currents that activated slowly and displayedMMTS-insensitive kinetics. These results show that theNH2-terminal tail of Kv2.1 participates in transitions leading to activation through interactions involving reduced cysteine(s) that can be modulated from thecytoplasmic phase.

  相似文献   

20.
In this work we address the question of the KCa3.1 channel pore structure in the closed configuration in relation to the contribution of the C-terminal end of the S6 segments to the Ca(2+)-dependent gating process. Our results based on SCAM (substituted cysteine accessibility method) experiments first demonstrate that the S6 transmembrane segment of the open KCa3.1 channel contains two distinct functional domains delimited by V282 with MTSEA and MTSET binding leading to a total channel inhibition at positions V275, T278, and V282 and to a steep channel activation at positions A283 and A286. The rates of modification by MTSEA (diameter 4.6 A) of the 275C (central cavity) and 286C residues (S6 C-terminal end) for the closed channel configuration were found to differ by less than sevenfold, whereas experiments performed with the larger MTSET reagent (diameter 5.8 A) resulted in modification rates 10(3)-10(4) faster for cysteines at 286 compared with 275. Consistent with these results, the modification rates of the cavity lining 275C residue by MTSEA, Et-Hg(+), and Ag(+) appeared poorly state dependent, whereas modification rates by MTSET were 10(3) faster for the open than the closed configuration. A SCAM analysis of the channel inner vestibule in the closed state revealed in addition that cysteine residues at 286 were accessible to MTS reagents as large as MTS-PtrEA, a result supported by the observation that binding of MTSET to cysteines at positions 283 or 286 could neither sterically nor electrostatically block the access of MTSEA to the closed channel cavity (275C). It follows that the closed KCa3.1 structure can hardly be accountable by an inverted teepee-like structure as described for KcsA, but is better represented by a narrow passage centered at V282 (equivalent to V474 in Shaker) connecting the channel central cavity to the cytosolic medium. This passage would not be however restrictive to the diffusion of small reagents such as MTSEA, Et-Hg(+), and Ag(+), arguing against the C-terminal end of S6 forming an obstructive barrier to the diffusion of K(+) ions for the closed channel configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号