首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The control of Glomerella leaf spot (GLS) in Brazil is solely based on fungicide sprays and new alternatives are needed. In apple, few biological control methods have been evaluated, and most have focused on post-harvest pathogens. Therefore, the objectives of this work were to study the mode of action of three bacterial strains and the commercial product Serenade® (Bacillus subtilis) against the Colletotrichum acutatum group, the causal agents of GLS, and to evaluate the influence of bacterial isolates and Serenade® on the development of the first cycle of infection disease under controlled conditions. To assess the mode of action of the bacterial isolates against strains of the C. acutatum group, in vitro tests were performed. It was tested the effect of the bacteria on conidial germination and mycelial growth, using three methodologies, (i) fungal-bacterial co-cultivation, (ii) bacterial thermostable metabolites and (iii) bacterial volatile compounds. The influence of the bacterial isolates on the GLS development was assessed using apple seedlings. The seedlings were first sprayed weekly with bacterial suspension for 5 weeks, and were then inoculated with conidia suspensions (104 conidia mL−1) of C. acutatum group isolates. Seedlings were maintained in chambers (CONVIRON) at 25 °C and a 12-h light regime. Disease severity of GLS was evaluated daily by counting typical lesions caused by C. acutatum group on all leaves during 12 consecutive days. The disease progress curve was fitted to nonlinear models for incidence and severity data. The treatments were compared by contrasting epidemiological parameters. Bacillus sp. isolated from the apple phylloplane inhibited more than 60% of the C. acutatum group conidial germination. The mode of action of Bacillus sp. and Bacillus alcalophilus on the C. acutatum group was through the production of fixed and volatile compounds, which inhibited mycelial growth. The primary mode of action of Serenade® on the C. acutatum group was the production of thermostable metabolites capable of completely inhibiting mycelial growth. In the GLS disease cycle, it was possible to adjust the monomolecular model for incidence and the number of lesions. There were significant differences between the epidemiological parameters of GLS in seedlings treated with apple phylloplane bacteria or with Serenade® as compared to the controls, indicating a potential for the use of biological control to manage GLS in apple orchards.  相似文献   

9.
10.
苹果炭疽叶枯病是由胶孢炭疽菌(Colletotrichum gloeosporioides)引起的一种真菌病害,现已上升为世界苹果生产中的主要病害之一。了解不同来源的苹果炭疽叶枯病菌致病力差异及明确苹果种质资源对苹果炭疽叶枯病的抗性,对品种选育、品种合理布局以及控制病害的流行具有重要的参考价值。本研究对不同来源的79株病原菌进行了室内致病力测定,获知该菌致病力差异明显,其中强致病力菌株所占比例大。同时,本研究也对327份苹果种质资源进行了室内抗病性鉴定,其中高抗资源160份,中抗资源6份,中感资源22份,高感资源139份。表明我国现保存的苹果种质资源中存在丰富抗病种质。进一步按苹果分类系统分析发现,抗病资源在当前栽培的主要品种群中均有分布,特别是红玉品种群、富士品种群抗病资源最为丰富。  相似文献   

11.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35°C and/or freeze-thawing (48 h at −20°C; 4 h at 4°C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35°C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4°C, 2 h at 25°C, or 1 h at 35°C or 6 h at 35°C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35°C plus freeze-thawing, SA plus 12 h at 25°C plus freeze-thawing, SA plus 6 h at 35°C, and SA plus 4 h at 35°C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35°C. Cider with no added organic acids treated with either 6 h at 35°C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

12.
Glomerella leaf spot (GLS) is a new fungal disease of apple that damages apple leaves mainly during the summer in China. For efficient GLS-resistant apple breeding by marker-assisted selection (MAS) and a better understanding of the molecular mechanisms of the resistance, it is important to find molecular markers that are tightly linked to GLS resistance genes and construct fine mapping. However, the development and selection of DNA markers are time-consuming and labor-intensive processes. Next-generation sequencing technology provides a powerful tool to overcome this limitation and is faster and more efficient in establishing the association of GLS resistance with molecular markers or searching for candidate genes. In this study, we report a method for rapid location of a GLS resistance gene locus (R gls ) in apple by whole genome re-sequencing technology coupled with bulked segregant analysis (BSA). A total of 3,399,950 single nucleotide polymorphisms (SNPs) were identified. Through the genome-wide comparison of SNP profiles between the resistant and the susceptible bulks constructed from F1 individuals derived from a cross between “Golden Delicious” and “Fuji,” the R gls locus was identified on apple chromosome 15 between 2 and 5 Mb. In this region, eight SNP markers were validated using high resolution melting (HRM), and the fine genetic mapping of the eight markers was constructed. The R gls locus was sandwiched by two flanking markers SNP4208 and SNP4257, with the recombination frequency of 0.97% (2/207). The marker SNP4236 co-segregated with R gls . The physical size of the R gls locus was estimated to be 49 kb. In this genetic interval, nine genes were predicted. Our study provides an effective method for rapid identification of genomic regions and development of the diagnostic markers for MAS. This strategy is potentially useful for other agronomic traits or plant species.  相似文献   

13.
14.
15.
16.
Chilling stress is an important constraint for maize seed establishment in the field. In this study, a type of “on-off” thermoresponsive coating agent containing poly (N-isopropylacrylamide-co-butylmethacrylate) (Abbr. P(NIPAm-co-BMA)) hydrogel was developed to improve the chilling tolerance of coated maize seed. The P(NIPAm-co-BMA) hydrogel was synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAm) and butylmethacrylate (BMA). Salicylic acid (SA) was loaded in the hydrogel as the chilling resistance agent. SA-loaded P(NIPAm-co-BMA) was used for seed film-coating of two maize varieties, Huang C (HC, chilling-tolerant) and Mo17 (chilling-sensitive), to investigate the coated seed germination and seedling growth status under chilling stress. The results showed that the hydrogel obtained a phase transition temperature near 12°C with a NIPAM to MBA weight ratio of 1: 0.1988 (w/w). The temperature of 12°C was considered the “on-off” temperature for chilling-resistant agent release; the SA was released from the hydrogel more rapidly at external temperatures below 12°C than above 12°C. In addition, when seedlings of both maize varieties suffered a short chilling stress (5°C), higher concentrations of SA-loaded hydrogel resulted in increased germination energy, germination percentage, germination index, root length, shoot height, dry weight of roots and shoots and protective enzyme activities and a decreased malondialdehyde content in coated maize seeds compared to single SA treatments. The majority of these physiological and biochemical parameters achieved significant levels compared with the control. Therefore, SA-loaded P(NIPAm-co-BMA), a nontoxic thermoresponsive hydrogel, can be used as an effective material for chilling tolerance in film-coated maize seeds.  相似文献   

17.
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.  相似文献   

18.
Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.  相似文献   

19.
Khurana JP  Cleland CF 《Plant physiology》1992,100(3):1541-1546
Lemna paucicostata LP6 does not normally flower when grown on basal Bonner-Devirian medium, but substantial flowering is obtained when 10 μm salicylic acid (SA) or benzoic acid is added to the medium. Benzoic acid is somewhat more effective than SA, and the threshold level of both SA and benzoic acid required for flower initiation is reduced as the pH of the medium is lowered to 4.0. SA- or benzoic acid-induced flowering is enhanced in the simultaneous presence of 6-benzylaminopurine (BAP), although BAP per se does not influence flowering in strain LP6. Continuous presence of SA or benzoic acid in the culture medium is essential to obtain maximal flowering. A short-term treatment of the plants (for first 24 h) with 10 μm SA or benzoic acid, followed by culture in the basal medium containing 1 μm BAP can, however, stimulate profuse flowering. Benzoic acid is more effective than SA, and the effect is more pronounced at pH 4 than at 5.5. Thus, under these conditions, flowering is of an inductive nature. Experiments with [14C]SA and [14C]benzoic acid have provided evidence that at pH 4 there is relatively more uptake of benzoic acid than SA, thus leading to an increased flowering response. The data obtained from the experiments designed to study the mobility of [14C]SA and [14C]-benzoic acid from mother to daughter fronds indicate that there is virtually no mobility of SA or benzoic acid between fronds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号