首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Knowledge of the functional cis-regulatory elements that regulate constitutive and alternative pre-mRNA splicing is fundamental for biology and medicine. Here we undertook a genome-wide comparative genomics approach using available mammalian genomes to identify conserved intronic splicing regulatory elements (ISREs). Our approach yielded 314 ISREs, and insertions of ~70 ISREs between competing splice sites demonstrated that 84% of ISREs altered 5′ and 94% altered 3′ splice site choice in human cells. Consistent with our experiments, comparisons of ISREs to known splicing regulatory elements revealed that 40%–45% of ISREs might have dual roles as exonic splicing silencers. Supporting a role for ISREs in alternative splicing, we found that 30%–50% of ISREs were enriched near alternatively spliced (AS) exons, and included almost all known binding sites of tissue-specific alternative splicing factors. Further, we observed that genes harboring ISRE-proximal exons have biases for tissue expression and molecular functions that are ISRE-specific. Finally, we discovered that for Nova1, neuronal PTB, hnRNP C, and FOX1, the most frequently occurring ISRE proximal to an alternative conserved exon in the splicing factor strongly resembled its own known RNA binding site, suggesting a novel application of ISRE density and the propensity for splicing factors to auto-regulate to associate RNA binding sites to splicing factors. Our results demonstrate that ISREs are crucial building blocks in understanding general and tissue-specific AS regulation and the biological pathways and functions regulated by these AS events.  相似文献   

3.
The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.  相似文献   

4.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

5.
Precursor-mRNAs(pre-mRNA) can be processed into one or more mature m RNA isoforms through constitutive or alternative splicing pathways. Constitutive splicing of pre-mRNA plays critical roles in gene expressional regulation, such as intronmediated enhancement(IME), whereas alternative splicing(AS) dramatically increases the protein diversity and gene functional regulation. However, the unavailability of mutants for individual spliced isoforms in plants has been a major limitation in studying the function of mRNA splicing. Here, we describe an efficient tool for manipulating the splicing of plant genes. Using a Cas9-directed base editor, we converted the 5′ splice sites in four Arabidopsis genes from the activated GT form to the inactive AT form. Silencing the AS of HAB 1.1(encoding a type 2 C phosphatase) validated its function in abscisic acid signaling, while perturbing the AS of RS31 A revealed its functional involvement in plant response to genotoxic treatment for the first time. Lastly,altering the constitutive splicing of Act2 via base editing facilitated the analysis of IME. This strategy provides an efficient tool for investigating the function and regulation of gene splicing in plants and other eukaryotes.  相似文献   

6.
Viruses use alternative splicing to produce a broad series of proteins from small genomes by utilizing the cellular splicing machinery. Since viruses use cellular RNA binding proteins for viral RNA processing, it is presumable that the splicing of cellular pre-mRNAs is affected by viral infection. Here, we showed that herpes simplex virus type 2 (HSV-2) modifies the expression of promyelocytic leukemia (PML) isoforms by altering pre-mRNA splicing. Using a newly developed virus-sensitive splicing reporter, we identified the viral protein ICP27 as an alternative splicing regulator of PML isoforms. ICP27 was found to bind preferentially to PML pre-mRNA and directly inhibit the removal of PML intron 7a in vitro. Moreover, we demonstrated that ICP27 functions as a splicing silencer at the 3′ splice site of the PML intron 7a. The switching of PML isoform from PML-II to PML-V as induced by ICP27 affected HSV-2 replication, suggesting that the viral protein modulates the splicing code of cellular pre-mRNA(s) governing virus propagation.  相似文献   

7.
8.
9.

Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.  相似文献   

12.
13.
14.
15.
16.
We report here the identification and characterization of a novel SR‐related protein, referred to as SRrp37, based on its apparent molecular weight and subcellular location. SRrp37 was identified through a yeast two‐hybrid screen during the course of searching for proteins interacting with pNO40, a ribosomal 60S core subunit. SRrp37 exhibited two alternative spliced isoforms generated by differential usage of the translation start site with the longer one, SRrp37, initiating at first exon and the shorter, SRrp37‐2, starting from exon 2. Three distinct motifs can be discerned in the SRrp37 protein: (1) a serine–arginine (SR) dipeptide enriched domain, (2) a polyserine stretch, and (3) a potential nucleolar localization signal comprising a long array of basic amino acids. SRrp37's message was translated in tissue‐specific patterns with both isoforms expressed at comparable levels in tissues showing expression. Indirect immunofluorescence analysis with an anti‐SRrp37 antibody, as well as an experiment using myc‐tagged proteins, demonstrated that SRrp37 was localized in nucleoli and nuclear speckles. GST pull‐down assay showed that SRrp37 interacted physically with SC35. Using adenovirus E1A and chimeric calcitonin/dhfr constructs as splicing reporter minigenes, we found that SRrp37 modulated alternative 5′ and 3′ splicing in vivo. Together, SRrp37 may participate directly in splicing regulation or indirectly through interaction with SC35. Studies on this novel splicing regulator may provide new information on the intricate splicing machinery as related to the RNA metabolism involving processing of mRNA and rRNA. J. Cell. Biochem. 108: 304–314, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Alternative splicing of introns is essential to ensure the complexity of mammalian genome functions. In particular, the generation of a high number of different isoforms by alternative splicing is an important characteristic of genes coding for signalling proteins such as mitogen activated protein kinases (MAPKs). This is thought to allow these proteins to transduce multiple stimuli in a highly regulated manner. Plant genes are also subjected to alternative splicing. Nevertheless, clear examples of the functional consequences of this phenomenon are still scarce in plants. MIK is a maize gene coding for a GCK-like MAP4K that can be activated by interaction with maize atypical receptor kinase (MARK), an atypical receptor kinase. Here we show that MIK is subjected to alternative splicing. Expression of MIK leads to, at least, 4 different mature mRNAs that accumulate with particular expression profiles during maize development. Our results show that the polypeptides encoded by the different MIK mRNAs display different kinase activity and are differentially activated by interaction with the MARK receptor. Two MIK isoforms display constitutive kinase activity, one isoform is inactive but can be activated by MARK, and the fourth MIK isoform is inactive and cannot be activated by MARK. Our results constitute a clear example of the biochemical consequences of alternative splicing in plants. The selective conservation during evolution of the intron–exon structure of the region coding for the regulator domain of MIK, as well as the maintenance in maize, rice and Arabidopsis of the alternative splicing of some of these introns, are strong indications of its functional importance.  相似文献   

18.
The KIT gene has been shown to have multiple functions in hematopoiesis, melanogenesis, and gametogenesis. In addition, mutations of this gene cause pigmentation disorders in humans and mice and are responsible for coat color differences in pigs. While characterizing polymorphisms in the porcine KIT gene, we detected alternative splicing (AS) of the NAGNAG splice acceptor site at the boundary of intron 4 and exon 5. This AS event generated the E and I isoforms, characterized by insertion or deletion, respectively, of CAG at the borders of coding sequence. AS patterns measured in tissue samples from two randomly selected animals did not identified any tissue-specific outcomes. Analysis of AS patterns using three breeds demonstrated that Landrace and Large White pigs expressed both the E and I isoforms. In contrast, a subset of specimens from Korean Native Pigs (KNP) yielded a single I isoform. Alignment of the sequence from several species revealed that the region between the branch point sequence (BPS) and 3′ acceptor site is conserved. However, it is appeared that the selection of either the proximal or distal splice site varied between species. To test the breed specificity the NAGNAG splice acceptor site, we constructed two lineages of minigenes from KNP and Landrace pigs harboring breed-specific mutations. The minigene splicing assay demonstrated that both types of minigenes expressed both the E and I isoforms in two host cell lines, and no differences were detected in the AS pattern between the two breeds. We conclude that the AS at the NAGNAG splice acceptor site on intron 4/exon 5 in the porcine KIT gene is the result of noise selection at the splice site by the splicing machinery. Therefore, this AS event in the porcine KIT gene is unlikely to have any relationship with the coat color variations of Landrace and KNP breeds.  相似文献   

19.
20.
SR45 is a serine/arginine-rich (SR)-like protein with two arginine/serine-rich (RS) domains. We have previously shown that SR45 regulates alternative splicing (AS) by differential selection of 5' and 3' splice sites. However, it is unknown how SR45 regulates AS. To gain mechanistic insights into the roles of SR45 in splicing, we screened a yeast two-hybrid library with SR45. This screening resulted in the isolation of two spliceosomal proteins, U1-70K and U2AF(35) b that are known to function in 5' and 3' splice site selection, respectively. This screen not only confirmed our prior observation that U1-70K and SR45 interact, but also helped to identify an additional interacting partner (U2AF(35) ). In vitro and in vivo analyses revealed an interaction of SR45 with both paralogs of U2AF(35) . Furthermore, we show that the RS1 and RS2 domains of SR45, and not the RNA recognition motif (RRM) domain, associate independently with both U2AF(35) proteins. Interaction studies among U2AF(35) paralogs and between U2AF(35) and U1-70K revealed that U2AF(35) can form homo- or heterodimers and that U2AF(35) proteins can associate with U1-70K. Using RNA probes from SR30 intron 10, whose splicing is altered in the sr45 mutant, we show that SR45 and U2AF(35) b bind to different parts of the intron, with a binding site for SR45 in the 5' region and two binding regions, each ending with a known 3' splice site, for U2AF(35) b. These results suggest that SR45 recruits U1snRNP and U2AF to 5' and 3' splice sites, respectively, by interacting with pre-mRNA, U1-70K and U2AF(35) and modulates AS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号