首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long non-coding RNA (lncRNA) was reported to be a critical regulator of cellular homeostasis, but poorly understood in idiopathic pulmonary fibrosis (IPF). Here, we systematically identified a crucial lncRNA, p53-induced long non-coding RNA TP53 target 1 (TP53TG1), which was the dysregulated hub gene in IPF regulatory network and one of the top degree genes and down-regulated in IPF-drived fibroblasts. Functional experiments revealed that overexpression of TP53TG1 attenuated the increased expression of fibronectin 1 (Fn1), Collagen 1α1, Collagen 3α1, ACTA2 mRNA, Fn1, and Collagen I protein level, excessive fibroblasts proliferation, migration and differentiation induced by TGF-β1 in MRC-5 as well as PMLFs. In vivo assays identified that forced expression of TP53TG1 by adeno-associated virus 5 (AAV5) not only prevented BLM-induced experimental fibrosis but also reversed established lung fibrosis in the murine model. Mechanistically, TP53TG1 was found to bind to amount of tight junction proteins. Importantly, we found that TP53TG1 binds to the Myosin Heavy Chain 9 (MYH9) to inhibit its protein expression and thus the MYH9-mediated activation of fibroblasts. Collectively, we identified the TP53TG1 as a master suppressor of fibroblast activation and IPF, which could be a potential hub for targeting treatment of the disease.Subject terms: Long non-coding RNAs, Respiratory tract diseases  相似文献   

2.
3.
Colon adenocarcinoma (COAD) is one of the most common cancers, and its carcinogenesis and progression is influenced by multiple long non-coding RNAs (lncRNA), especially through the miRNA sponge effect. In this study, more than 4000 lncRNAs were re-annotated from the microarray datasets through probe sequence mapping to obtain reliable lncRNA expression profiles. As a systems biology method for describing the correlation patterns among genes across microarray samples, weighted gene co-expression network analysis was conducted to identify lncRNA modules associated with the five stepwise stages from normal colonic samples to COAD (n = 94). In the most relevant module (R2 = −0.78, P = 4E-20), four hub lncRNAs were identified (CTD-2396E7.11, PCGF5, RP11-33O4.1, and RP11-164P12.5). Then, these four hub lncRNAs were validated using two other independent datasets including GSE20916 (n = 145) and GSE39582 (n = 552). The results indicated that all hub lncRNAs were significantly negatively correlated with the three-stage colonic carcinogenesis, as well as TNM stages in COAD (one-way analysis of variance P < 0.05). Kaplan-Meier survival curve showed that patients with higher expression of each hub lncRNA had a significantly higher overall survival rate and lower relapse risk (log-rank P < 0.05). In conclusion, through co-expression analysis, we identified and validated four key lncRNAs in association with the carcinogenesis and progression of COAD, and these lncRNAs might have important clinical implications for improving the risk stratification, therapeutic decision and prognosis prediction in COAD patients.  相似文献   

4.
Long non-coding RNAs (lncRNAs) have recently emerged as key players in many physiologic and pathologic processes. Although many lncRNAs have been identified, few lncRNAs have been characterized functionally in aging. In this study, we used human fibroblast cells to investigate genome-wide lncRNA expression during cellular senescence. We identified 968 down-regulated lncRNAs and 899 up-regulated lncRNAs in senescent cells compared with young cells. Among these lncRNAs, we characterized a senescence-associated lncRNA (SALNR), whose expression was reduced during cellular senescence and in premalignant colon adenomas. Overexpression of SALNR delayed cellular senescence in fibroblast cells. Furthermore, we found that SALNR interacts with NF90 (nuclear factor of activated T-cells, 90 kDa), an RNA-binding protein suppressing miRNA biogenesis. We demonstrated that NF90 is a SALNR downstream target, whose inhibition led to premature senescence and enhanced expressions of senescence-associated miRNAs. Moreover, our data showed that Ras-induced stress promotes NF90 nucleolus translocation and suppresses its ability to suppress senescence-associated miRNA biogenesis, which could be rescued by SALNR overexpression. These data suggest that lncRNA SALNR modulates cellular senescence at least partly through changing NF90 activity.  相似文献   

5.
Pulmonary fibrosis is a chronic interstitial lung disease characterized by pulmonary epithelial injury, fibroblast activation, extracellular matrix deposition, and tissue structure destruction. However, an effective drug treatment remains unavailable. Therefore, studying the mechanism of pulmonary fibrogenesis and finding effective drugs have become important problems in the field of respiratory diseases. Pulmonary fibrosis is typically characterized by activated fibroblast proliferation and migration. Hence, abnormality in activated fibroblast proliferation and migration is a major concern for treating pulmonary fibrosis. Long noncoding RNA (lncRNA) is an enigmatic subclass of ncRNA that regulates various fundamental biological processes and participates in disease occurrence and development. However, studies on lncRNA as the therapeutic target of drug action are rarely reported. Our group first identified differentially expressed lncRNAs and revealed that lncITPF is a highly upregulated lncRNA in lung fibrosis. In particular, lncITPF is detected in the blood of patients with idiopathic pulmonary fibrosis. Clinical analysis shows that lncITPF is positively correlated with the degree of fibrosis. The receiver operating characteristic (ROC) curve indicates that the specificity and sensitivity values are 95.0 and 64.3, respectively. The area under the ROC curve is 0.804, indicating that lncITPF can be a diagnostic biomarker for IPF. However, whether lncITPF is effective as a therapeutic target of drug action against pulmonary fibrosis remains unclear. In this study, lncITPF acting as the therapeutic target of astaxanthin was explored in depth. The findings elucidated that astaxanthin blocks the activated fibroblast proliferation and migration through lncITPF and mitochondria‐mediated signal pathways to alleviate pulmonary fibrogenesis.  相似文献   

6.
7.
AimsCardiac fibroblast (CF) activation is the key event for cardiac fibrosis. The role of glycolysis and the glycolysis-related lncRNAs in CF activation are unknown. Thus, we aimed to investigate the role of glycolysis in CF activation and to identify the glycolysis-related lncRNAs involved.Main methodsGlycolysis-related lncRNAs were searched and their expression profiles were validated in activated human CF (HCF) and human failing heart tissues. Expression of the target lncRNA was manipulated to determine its effects on HCF activation and glycolysis. The underlying mechanisms of lncRNA-dependent glycolysis regulation were also addressed.Key findingsHCF activation induced by transforming growth factor-β1 was accompanied by an enhanced glycolysis, and 2-Deoxy-d-glucose, a specific glycolysis inhibitor, dramatically attenuated HCF activation. Twenty-eight glycolysis-related lncRNAs were identified and Linc00092 expression was changed mostly upon HCF activation. In human heart tissue, Linc00092 is primarily expressed in cardiac fibroblasts. Linc00092 knockdown activated HCFs with enhanced glycolysis, while its overexpression rescued the activated phenotype of HCFs and down-regulated glycolysis. Restoration of glycolysis abolished the anti-fibrotic effects conferred by Linc00092. Linc00092 inhibited ERK activation in activated HCFs, and ERK inhibition counteracted the fibrotic phenotype in Linc00092 knockdown HCFs.SignificanceThese results revealed that Linc00092 could attenuate HCF activation by suppressing glycolysis. The inhibition of ERK by Linc00092 may play an important role in this process. Together, this provides a better understanding of the mechanism of CF activation and may serve as a novel target for cardiac fibrosis treatment.  相似文献   

8.
9.
Recent studies have demonstrated that long non-coding RNAs (lncRNAs) play critical roles in cancer development and progression. However, the mechanism by which lncRNAs contribute to colorectal cancer remains unclear. In this study, we identified the lncRNA, DANCR, which was upregulated in colorectal cancer. The upregulation of DANCR expression was associated with shorter patient survival time. DANCR depletion decreased cell proliferation, cell cycle progression, and tumorigenesis in a subcutaneous mouse xenograft model system. We further demonstrated that DANCR bound with lysine acetyltransferase 6A. This binding was essential for KAT6A acetyltransferase activity and thus, it influenced the expression of KAT6A target genes. Our data indicated that DANCR functions as an oncogenic lncRNA that promotes tumor development and progression. Therefore, DANCR may be a target molecule for colorectal cancer treatment.  相似文献   

10.
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1–mediated epithelial–mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β–induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial–mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial–mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1–tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β–activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor–like repeats. Together, these data identify that aberrant bidirectional epithelial–mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.  相似文献   

11.
Interstitial pulmonary fibrosis (IPF) is a severe progressive lung disease with limited therapeutic options and poor prognosis. Initially, we found the downregulated level of neural precursor cell expressed developmentally down-regulated 4-like protein (NEDD4L) in IPF-related expression microarray dataset, and this study was thus performed to explore the molecular mechanism of NEDD4L in IPF. The expression of NEDD4L was subsequently validated in lung tissues of IPF patients and mouse models. Then, mouse primary lung fibroblasts (LFs) were collected for in vitro functional experiments, with CCK-8, Transwell, and immunofluorescence assays used to examine the viability, migration, and differentiation of LFs. The in vitro findings were further assessed using in vivo mouse models. The expression of NEDD4L was down-regulated in lung tissues of IPF patients and mouse models. Overexpression of NEDD4L restricted the formation and progression of IPF in mice and attenuated the proliferative, invasive and differentiative abilities of LFs. Further, NEDD4L halted LFs activity by enhancing β-catenin ubiquitination and down-regulating the CTHRC1/HIF-1α axis. Also, in vivo experiments then validated that NEDD4L silencing repressed β-catenin ubiquitination and activated the CTHRC1/HIF-1α axis, thereby aggravating IPF in mice. NEDD4L may suppress the formation and progression of IPF through augmenting β-catenin ubiquitination and inhibiting the CTHRC1/HIF-1α axis.  相似文献   

12.
13.
The early detection of lung cancer is a major clinical challenge. Long noncoding RNAs (lncRNAs) have important functions in tumorigenesis. Plasma lncRNAs directly released from primary tumors or the circulating cancer cells might provide cell-free cancer biomarkers. The objective of this study was to investigate whether the lncRNAs could be used as plasma biomarkers for early-stage lung cancer. By using droplet digital polymerase chain reaction, we determined the diagnostic performance of 26 lung cancer–associated lncRNAs in plasma of a development cohort of 63 lung cancer patients and 33 cancer-free individuals, and a validation cohort of 39 lung cancer patients and 28 controls. In the development cohort, 7 of the 26 lncRNAs were reliably measured in plasma. Two (SNHG1 and RMRP) displayed a considerably high plasma level in lung cancer patients vs. cancer-free controls (all P?<?.001). Combined use of the plasma lncRNAs as a biomarker signature produced 84.13% sensitivity and 87.88% specificity for diagnosis of lung cancer, independent of stage and histological type of lung tumor, and patients' age and sex (all P?>?.05). The diagnostic value of the plasma lncRNA signature for lung cancer early detection was confirmed in the validation cohort. The plasma lncRNA signature may provide a potential blood-based assay for diagnosing lung cancer at the early stage. Nevertheless, a prospective study is warranted to validate its clinical value.  相似文献   

14.
15.
16.
17.
18.
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.  相似文献   

19.
Recent efforts have revealed that numerous oncogenic lncRNAs have been found play pivotal role in Glioma progression while there is little know about anti-oncogenic lncRNAs in Glioma. In current study, we found a HMGB1 regulated lncRNA, Linc00320, is significantly decreased in Glioma malignant tissues and its low expression predicts poor prognosis. Moreover, we found that the nucleus localized Linc00320 inhibits Glioma cell proliferation both in vitro and in vivo. In addition, we found that Linc00320 binds to β-catenin and inhibits the activity of Wnt/β-catenin signaling by disrupting β-catenin binds to TCF4 in Glioma cells. Taken together, we firstly demonstrated the tumor suppressive lncRNA, Linc00320, is down-regulated in Glioma tissues and inhibits Glioma cell proliferation by restraining Wnt/β-catenin signaling through segregating β-catenin and TCF4 and revealed the novel HMGB1/Linc00320/β-catenin axis in Glioma progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号