首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The radiation-sensitive mutant M10 of mouse lymphoma L5178Y cells was examined for its ability to rejoin DNA single-strand breaks induced by gamma-rays. The alkaline sucrose gradient sedimentation analysis revealed that M10 cells repaired single-strand breaks but simultaneously produced increasing amounts of small DNA fragments with time of postirradiation incubation, something which was not observed in L5178Y cells. Since small fragments did not appear in M10 cells irradiated at room temperature, DNA fragmentation may result from cold treatment during irradiation followed by incubation at 37 degrees C. This indicates that the cold susceptibility is characteristic of M10 cells and is not related to radiation sensitivity of this mutant. This conclusion is supported by the finding that no DNA degradation takes place after cold treatment with a subsequent incubation in the other radiosensitive mutant LX830 that belongs to the same complementation group as M10.  相似文献   

4.
The DNA-unwinding method developed by Ahnstr?m and his coworkers to measure DNA strand breaks in mammalian cells was used to measure single-strand breaks (SSB) in the DNA of intact yeast cells. DNA unwinding, which took place inside the rigid cell wall of yeast, was investigated as a function of time, radiation dose, and of pH and salt concentration of the alkaline solution. After DNA unwinding had taken place, the cell wall was destroyed by partial enzymatic digestion and sonication in the presence of detergents. Fragments of single- and double-stranded DNA were separated using hydroxylapatite chromatography. In this way the most suitable conditions for DNA unwinding within the cell wall were established. The results show that SSB and double-strand breaks (DSB) give rise to different kinetics of DNA unwinding.  相似文献   

5.
6.
7.
8.
The alkylating agent, triethylenemelamine (TEM), was studied for its ability to induce unscheduled DNA (repair) synthesis (UDS) in vivo in rat lymphocytes. Somatic cytogenetic alterations were analyzed (in bone marrow) and compared with UDS as a function of TEM dosage. UDS was evaluated through the use of autoradiography; cytogenetic alterations were studied in metaphase bone marrow chromosome preparations.Data indicated that the degree of UDS is a direct function of TEM dosage up to a rate-limiting concentration, at which point it ceases to be dose dependent. Except for a deviation at the highest dose level tested, the extent of cytogenetic damage was directly and linearly related to TEM dose. Between the control and intermediate (0.2 mg/kg) dose levels, UDS response increased II-fold while cytogenetic damage showed only a 4-fold increase; this disparity diminished with increasing TEM dose. In the lower dose levels, therefore, the greater relative sensitivity of UDS evaluation in the detection of genetic activity may be indicated. Patterns of UDS response observed through the in vivo assay developed in this study were found to be analogous to those established in in vitro studies.  相似文献   

9.
Near-ultraviolet (300 to 400 nm) irradiation of L-tryptophan yielded H2O2 (a toxic photoproduct) that was selectively lethal for rec and polA1 Escherichia coli mutants. H2O2 treatment of cells resulted in the induction of single-strand deoxyribonucleic acid breaks. These breaks were repaired to only a small extent in polA1, recA recB, and recA mutants, but were efficiently repaired in wild-type strains. We conclude that H2O2 deoxyribonucleic acid lesions require both the polA+ and recA+ pathways for repair.  相似文献   

10.
The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.  相似文献   

11.
DNA from untreated L-cells had a weight average molecular weight (Mw) of 5.7 ± 0.58·108 daltons as measured by sedimentation in an alkaline sucrose gradient. This value was reduced by one half after the cells were treated for 1 h with 8 μg/ml of N-methyl-N-nitrosourea (MNUA), 34 μg/ml of methyl methanesulfonate (MMS) or 0.16 μg/ml of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). That dose of MNUA produced 52 methylations per 5.7·108 daltons DNA. 20% of these were not purine derivatives and were assumed to contain some phosphotriesters. That dose of MMS (above) produced 290 methylations per 5.7·108 daltons DNA and about 14% of these were not purine derivatives. The rates of loss of methylated purines from DNA were 2.3% per hour for 7-methylguanine (7-MeG), 7.4% per hour for 3-methyladenine (3-MeA) and no detectable loss of O6-methylguanine (O6-MeG) over a 12 h period. Since phosphotriesters are alkali-labile the single-strand breaks probably arose from this structure and did not form within the cell. This conclusion is supported by the following considerations. MNUA was more effective than MMS at reducing the molecular weight of DNA, as measured in alkaline medium. The greater SN1 character of MNUA would cause a greater formation of phosphotriesters than would MMS.  相似文献   

12.
F. Pera  P. Mattias 《Chromosoma》1976,57(1):13-18
A method of labelling DNA in vivo with 5-bromodeoxyuridine (BrdU) is described. After 6 h permanent subcutaneous infusion of BrdU in rodents (adult Microtus agrestis, pregnant NMRI-mice), cell nuclei which have undergone DNA synthesis during the BrdU treatment can be differentiated from the nuclei of other cycle stages by means of their altered staining behaviour after Giemsa. 24 h after the BrdU treatment, mitoses from both bone marrow of the adult animals and tissues from the fetuses showed a differential sister chromatid staining. In male M. agrestis, sister chromatid exchanges were most frequently found in the euchromatic part of the X and in the constitutive heterochromatin of both sex chromosomes.  相似文献   

13.
Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.  相似文献   

14.
Clustered DNA damage, where two or more lesions are located proximal to each other on the same or opposite DNA strands, is frequently produced as a result of exposure to ionising radiation. It has been suggested that such complex damaged sites pose problems for repair pathways. In this study, we addressed the question of how two 8-oxoguanine lesions, located two nucleotides apart on the same DNA strand, are repaired. We find that in human cell extracts repair of either of the 8-oxoguanine lesions within a tandem damaged site is initiated randomly and that the majority of the initiated repair proceeds to completion. However, a fraction of the initiated repair is delayed at the stage of an incised AP site and the rate of further processing of this incised AP site is dependent on the position of the remaining 8-oxoguanine. If the remaining 8-oxoguanine residue is located near the 5' terminus of the incised abasic site, repair continues as efficiently as repair of a single 8-oxoguanine residue. However, repair is delayed after the incision step when the remaining 8-oxoguanine residue is located near the 3' terminus. Although the presence of the 8-oxoguanine residue near the 3' terminus did not affect either DNA polymerase beta activity or poly(ADP)ribose polymerase-1 affinity and turnover on an incised AP site, we find that 8-oxoguanine-DNA glycosylase has reduced ability to remove an 8-oxoguanine residue located near the 3' terminus of the incised AP site. We find that binding of the 8-oxoguanine-DNA glycosylase to this 8-oxoguanine residue inhibits DNA repair synthesis by DNA polymerase beta, thus delaying repair. We propose that interference between a DNA glycosylase and DNA polymerase during the repair of tandem lesions may lead to accumulation of the intermediate products that contain persisting DNA strand breaks.  相似文献   

15.
The distribution of methyl methanesulfonate induced DNA repair was measured in mouse mammary cell chromatin by digestion of "repair labeled" nuclei with micrococcal nuclease. The results indicate that there is a nonuniform distribution of DNA repair in chromatin. The chromatin fraction digested during the first 5 minutes of incubation with micrococcal nuclease appears to be a primary site of DNA repair after methyl methanesulfoante treatment. The observed nonuniform distribution of DNA repair in chromatin may be due to 1)a nonrandom alkylation of DNA in chromatin by methyl methanesulfonate or 2)areas in chromatin of increased accessibility for the repair enzymes to the DNA lesions.  相似文献   

16.
The kinetics of disappearance of single-strand breaks (SSB) from the DNA of X-irradiated stationary yeast cells under liquid-holding conditions was found to proceed in a dose-independent manner up to a dose of at least 2400 Gy, and was found to be complete after incubation of cells for 1 h. This was deduced from data for a yeast wild-type (WT) haploid and diploid strain as well as for rad52 haploid cells defective in DNA double-strand break (DSB) repair. In all cases an initial fast repair component assumed to correspond to SSB repair was observed whereby about 80% of the induced 'unwinding points' disappeared from the DNA with a time constant of about 3 min. Following this fast component, a slower component of removal of 'unwinding points' occurred with a time constant estimated to be 20 min. The molecular nature of these two components of repair is not known. We could find no evidence for the induction of secondary (enzymatic) breaks in the DNA during post-irradiation incubation. Incubation of cells in growth medium after irradiation resulted in similar kinetics as those under liquid-holding conditions. In the absence of an energy source in the medium (i.e. when cells were incubated in buffer or distilled water after irradiation) only 60-80% of the SSB were removed from yeast DNA. Residual SSB disappeared from the DNA only when cells were transferred to a medium containing glucose. The relative mass of DNA unwound per induced strand break (i.e. represented by the slope of the dose-effect curve immediately after irradiation) was found to change slowly with the age of the cell culture under liquid-holding conditions. This effect had to be corrected for in the measurements of strand break repair under these conditions.  相似文献   

17.
18.
An exonuclease III-deficient strain of Escherichia coli K-12, BW2001 (xthA11), was unable to perform rapid repair of X-ray-induced deoxyribonucleic acid single-strand breaks and appeared to have a defect in the priming of the 3'-termini necessary for initiation of repair synthesis at the breaks. This defect cannot be explained solely by the lack of exonuclease III activity, because other xth mutants tested, including a deletion mutant, repaired radiation-induced strand breaks at close to the normal rate.  相似文献   

19.
Nitrofurantoin was not positive as a carcinogen in long term assays. In vitro it was positive in some short term tests and negative in others. We have examined Nitrofurantoin for its capability of inducing DNA damage in vivo. With the alkaline elution technique, Nitrofurantoin appeared clearly positive in all the tissues examined (liver, kidney, lung, spleen and bone marrow). In the liver we also observed some cross-linking effect. In bone marrow cells Nitrofurantoin was also clearly positive in terms of sister chromatid exchanges (SCEs) induction. DNA damage in vivo was also examined with a viscosimetric method, more sensitive than alkaline elution. With this method the results were essentially negative, suggesting that the two methods detect different types of damage. In view of its positivity in many organs and in two short term tests in vivo, the carcinogenic potential of Nitrofurantoin should be reconsidered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号