首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrograde axonal transport process was investigated in the afferent systems to the rat olfactory bulb, after [3H]noradrenaline ([3H]NA) injection into the olfactory bulb, in order to provide evidence regarding its specificity and the biochemical basis supporting this specificity.

Radioautographs showed that [3H]NA unilaterally injected into the olfactory bulb at a concentration of 10−3 M, resulted in labeling of the structures afferent to the olfactory bulb, mainly on the injected side: locus coeruleus (LC), dorsal and central raphes, nucleus of the lateral olfactory tract and piriform cortex. Heavy labeling was observed on the noradrenergic LC cell bodies, whereas the radioautographic reaction was less intense on the other structures. After 10−4 M injection, the labeling intensity of the LC cell bodies was lower while very rare weakly labeled cell bodies persisted in the dorsal raphe, nucleus of the lateral olfactory tract and piriform cortex. The LC cell bodies were exclusively labeled when the concentration of [3H]NA injection was 10−5 M. All the other structures were devoid of labeling. It was still possible to detect labeled cell bodies in the LC for a 10−6 M concentration.

Following bilateral injections of [3H]NA (10−3 M) the total radioactivity retrogradely transported to the LC represented about 4 times the total radioactivity measured in the periaqueductal gray substance (as control tissue of the tracer diffusion). Fractional study by ethanol of LC tissue homogenate and liquid scintillation counting of each fraction showed that 60% of the total radioactivity (about 2.5 times the control value) was in the supernatant and 40% (about 20 times the control value) was associated with the precipitate. In the other regions such as the dorsal and central raphes and periaqueductal gray substance, radioactivity was mainly found in the supernatant, except for the dorsal raphe whose precipitate contained a low amount of radioactivity (about 4 times the control value).

Colchicine (an axonal transport inhibitor) bilaterally injected into the medial forebrain bundle and systemic administration of desipramine (a noradrenaline uptake inhibitor) decreased the radioactivity associated with the LC precipitate by 90 and 85% and the LC supernatant radioactivity by 55 and 35%, respectively. These pretreatments did not significantly affect the radioactivity amounts measured in the different fractions of dorsal and central raphes and periaqueductal gray substance. Radioautographic study after colchicine treatment showed a large decrease in the labeling intensity of the LC cell bodies as compared to the non-treated side.

Therefore, we suggest that low concentrations (10−5 M) of [3H]NA injected in the olfactory bulb determine specific conditions of noradrenergic pathway labeling. This specific labeling after migration could be supported by the radioactive ethanol precipitate which would appear to contain [3H]NA- and/or 3H-derivatives-binding protein. Such a 3H-macromolecular complex, which could represent the specific carrier, may well undergo retrograde transport from the nerve terminals towards the cell bodies.  相似文献   


2.
3.
A biochemical analysis of radioactive compounds was performed in the olfactory bulb (OB) and raphe dorsalis (RD) after injection of radioactive [3H] or [14C]serotonin (5-HT ranging from 10?2 M to 10?7 M) into the OB of rats treated or not with a monoamine-oxidase inhibitor (MAOI).In the OB of untreated rats, radioactivity was associated with precipitated protein and soluble perchloric acid (PCA) fractions. High performance liquid chromatography (HPLC) analysis of the PCA-supernatant gave 4 radioactive peaks: one associated with endogenous 5-HT, another with endogenous 5-hydroxyindole acetic acid (5-HIAA) and two without any relationship with endogenous hydroxyindoles: a ‘5-HT derivative A’ and a ‘5-HT derivative B’. The presence of these ‘5-HT derivatives’ was significantly reduced after treatment with 5,6-dihydroxytryptamine.In the RD, radioactivity was associated with the protein fraction and with ‘5-HT derivative A’. The kinetic analysis (from 30 min to 46 h) of the ‘5-HT derivative A’ was characterized by a disappearance in the OB and an accumulation in the RD corresponding to a rate of migration in a range of 0.7 to 2 mm/h. This compound was absent or negligible in other non-serotoninergic neurons (such as the Locus Coeruleus, Amygdala and Cortex piriformis). No clear evidence for retrograde transport of radioactive 5-hydroxytryptophan (5-HTP) or 5-HIAA was found.At lower concentration of 5-HT injected into the OB, the half lives and the times of maximal accumulation for 5-HIAA, ‘5-HT derivative A’ and ‘5-HT derivative B’ were increased. The specific activity of 5-HT and 5-HIAA was also increased.The selective radioactive accumulation in the cell bodies of RD neurons after injection of radioactive 5-HT into the OB is discussed as resulting from a selectivity in (a) the uptake by 5-HT nerve terminals; (b) the metabolism of 5-HT into ‘5-HT derivative A’ in the OB; (c) the retrograde axonal transport of ‘5-HT derivative A’. This ‘5-HT derivative A’ could represent a messenger between nerve terminals and cell bodies and could be involved in homeostatic mechanisms that maintain cellular dynamics.When a MAOI was used, ‘5-HT-derivative A’ and [3H]5-HT were found in the OB and also in the RD cell bodies, and to a lesser extent, in the non-serotoninergic cell bodies. These results indicate that MAO inhibition produces a relative non-selectivity in the ‘uptake-metabolism and retrograde axonal transport’ systems.  相似文献   

4.
Rapid axonal transport was studied in sciatic nerve preparations of the amphibian Xenopus laevis maintained in vitro at 23.0 +/- 0.2 degrees C. A pulse of [35S]methionine-labeled material was allowed to move in the anterograde direction until encountering a lesion, at which a portion of the pulse reversed directions and moved in the retrograde direction. By constricting the nerve during the course of the experiment, it was possible to prevent continuous return of label from the lesion, thus creating a retrogradely moving pulse that contained a defined quantity of radiolabel. Movement of both the anterograde and the retrograde pulse were monitored continuously for up to 24 h using a position-sensitive detector of ionizing radiation. The front and the back edge of the anterograde pulse were found to move at the rates of (mm/day) 179.9 +/- 3.9 (+/- SEM) and 149.9 +/- 5.9, respectively, and the front and the back edge of the retrograde pulse moved at the rates of 155.8 +/- 11.3 and 84.6 +/- 2.9, respectively. By comparison of the quantity of label lost to the stationary phase to the quantity of label calculated to have been present in the anterograde pulse, it was determined that 0.068 +/- 0.009 of the anterograde pulse is lost to each 3.18-mm region of nerve. Comparison of the quantity of label calculated to have been present in the retrograde pulse to that in the anterograde pulse revealed that 0.057 +/- 0.014 of the retrograde pulse is lost to each 3.18-mm region of nerve. It is concluded that protein originating in the cell body and which reverses its direction of transport at a lesion can be lost from the retrograde axonal transport system.  相似文献   

5.
6.
Purified alpha-bungarotoxin was isolated by chromatography and made radioactive with tritium ([3H]acetamidino-alpha-bungarotoxin). Infusions of [3H]alpha-bungarotoxin alone or preceded by tubocurarine or atropine were given into the third ventricle. 2. 12, or 24 h after injection the brains were prepared for autoradiography. Injections of alpha-bungarotoxin (radioinert) in buffer, or of [3H]parathyroid hormone in buffer, served as controls. The various patterns of labeling suggest the presence of nicotinic-cholinergic neurons within the arcuate and basolateral regions of the hypothalamus including the supraoptic and suprachiasmatic nuclei and, in addition, the central nucleus of the amygdala.  相似文献   

7.
The uptake of [3H]norepinephrine ([3H]NE) was studied in dissociated brain cell cultures prepared from 8-day-old chick embryos using the whole brain (minus optic lobes). Uptake of [3H]NE, 5×10–9 M, 10 min incubation, in freshly dissociated noncultured embryonic chick brain cells, was detected in 6-day-old embryos; it was temperature and drug (cocaine, metanephrine) sensitive and increased with brain development. In cultured cells, which were assayed at various days in culture, the increase in [3H]NE accumulation per culture was less than that seen in freshly dissociated noncultured embryonic cells. When [3H]NE uptake was expressed per mg protein, a decrease with days in culture was observed, reflecting perhaps a dilution of growth or proliferation of cells not accumulating NE. Metanephrine, 5×10–6 M, an inhibitor of extraneuronal uptake, inhibited [3H]NE in 5-day-old cultures whereas desmethylimipramine, an inhibitor of neuronal uptake, inhibited [3H]NE uptake in 15- and 20-day-old cultures. Cocaine, another neuronal inhibitor, inhibited [3H]NE at 10 and 15 days only. We interpret these findings to suggest that during early growth in culture most neuroblasts accumulate NE nonspecifically and, as neuronal maturation proceeds, NE accumulation becomes specific.  相似文献   

8.
Labeled UDP-GlcNAc and chitooligosaccharides should be powerful tools for studies of N-acetylglucosaminyltransferase such as chitin synthases. We describe here a rapid, inexpensive and a common strategie for the chemoenzymatic synthesis of uridine 5′-diphospho-N-[2H]-acetyl-glucosamine and the chemical preparation of N-[2H]-acetyl chitooligosaccharides (from 2 to 5 mers). Deuterated UDP-GlcNAc analogue was tested as chitin synthase substrate and it exhibited an incorporation level in chitin as the natural substrate. Deuterium labeling of carbohydrates present different advantages: it is a stable isotope and allows glycosyltransferase mechanism studies by a mass spectrometry approach.  相似文献   

9.
The retrograde transport of horseradish peroxidase (HRP) was used to demonstrate the neurosecretory hypothalamo-hindbrain connection of the rat. Following HRP injections into the region of the dorsal columns nuclei labeled cells were observed in the caudal part of the paraventricular nucleus and in the lateral hypothalmic area. Hypothalamo-hindbrain projections are predominantly uncrossed.  相似文献   

10.
11.
Little is known regarding how alkali metal ions are transported in the olfactory nerve following their intranasal administration. In this study, we show that an alkali metal ion, thallium is transported in the olfactory nerve fibers to the olfactory bulb in mice. The olfactory nerve fibers of mice were transected on both sides of the body under anesthesia. A double tracer solution (thallium-201, (201)Tl; manganese-54, (54)Mn) was administered into the nasal cavity the following day. Radioactivity in the olfactory bulb and nasal turbinate was analyzed with gamma spectrometry. Auto radiographic images were obtained from coronal slices of frozen heads of mice administered with (201)Tl or (54)Mn. The transection of the olfactory nerve fibers was confirmed with a neuronal tracer. The transport of intranasal administered (201)Tl/(54)Mn to the olfactory bulb was significantly reduced by the transection of olfactory nerve fibers. The olfactory nerve transection also significantly inhibited the accumulation of fluoro-ruby in the olfactory bulb. Findings indicate that thallium is transported by the olfactory nerve fibers to the olfactory bulb in mice. The assessment of thallium transport following head injury may provide a new diagnostic method for the evaluation of olfactory nerve injury.  相似文献   

12.
A method was developed for radiolabeling excitatory amino acid receptors of rat brain with L-[3H]glutamate. Effective labeling of glutamate receptors in slide-mounted 10-microns sections was obtained using a low incubation volume (0.15 ml) and rapid washing: a procedure where high ligand concentrations were achieved with minimal waste. Saturation experiments using [3H]glutamate revealed a single binding site of micromolar affinity. The Bmax was trebled in the presence of Ca2+ (2.5 mM) and Cl- (20 mM) with no change in the Kd. Binding was rapid, saturable, stereospecific, and sensitive to glutamate receptor agonists. The proportions of [3H]glutamate binding sensitive to N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were 34, 54, and 51%, respectively. NMDA inhibited binding at a distinct subset of L-[3H]glutamate sites, whereas AMPA and kainate competed for some common sites. Labeling of sections with L-[3H]glutamate in the presence of the selective agonists allowed autoradiographic visualization of glutamate receptor subtypes in brain tissue.  相似文献   

13.
Taxol exerts a potent effect on the assembly and stability of cellular microtubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

14.
Taxol exerts a potent effect on the assembly and stability of cellular micro tubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

15.
Neuroinvasion of the CNS during orally acquired transmissible spongiform encephalopathies (TSEs) may involve the transport of the infectious agent from the periphery to the CNS via the peripheral nerves. If this occurs within axons, the mechanism of axonal transport may be fundamental to the process. In studies of peripheral nerve we observed that the cellular prion protein (PrPc) is highly resistant to detergent extraction. The implication of this is an underestimation of the abundance of PrPc in peripheral nerve. We have developed nerve extraction conditions that enhance the quantification of the protein in nerve 16-fold. Application of these conditions to evaluate the accumulation of PrPc distal to a cut nerve now reveals that PrPc is retrogradely transported from the axon ending. These results provide a potential cellular mechanism for TSE infectivity to gain entry to the CNS from the periphery.  相似文献   

16.
Injury to the rat sciatic nerve leads to the induction of nerve growth factor (NGF) receptors on the denervated Schwann cells and their disappearance on the regenerating axons of the axotomized, normally NGF-sensitive sensory and sympathetic neurons. This disappearance in the axonal expression and retrograde transport of NGF receptors is associated with a similarly dramatic reduction in the axonal uptake and retrograde transport of NGF following axotomy and during regeneration. In view of the massive NGF synthesis occurring in the injured nerve, these results suggest that, while sensory and sympathetic neurons are the primary targets of NGF in the normal peripheral nervous system, the denervated Schwann cells may become its primary target in the aftermath of nerve injury.  相似文献   

17.
18.
19.
Retrograde axonal transport of antibodies against synaptic membrane glycoproteins was studied in the hypoglossal nerve and several CNS pathways of the rat. Injection into the tongue of polyclonal antibodies against synaptic membrane glycoproteins produced immunocytochemically labeled cells in the hypoglossal nucleus 4-5 hr later. Immunoreactive staining increased through 48 hr after injection and then declined. Injections of Fab preparations of the antibody gave labeling patterns indistinguishable from those of the whole antibody. The specificity of this method is shown by control studies in which antibodies against antigens that are not known to be present on the surface of presynaptic membranes were injected and gave no retrograde labeling. Retrograde labeling was also demonstrated in CNS pathways. However, labeling was never as intense as that seen in the hypoglossal nucleus, and some CNS pathways failed to show any retrograde labeling. Furthermore, retrograde labeling after control injections could be demonstrated in some cases. To determine if antibodies were also transported anterogradely, injections were made into the vitreous body of the eye, and the superior colliculus was processed for immunocytochemistry. Unlike wheat-germ agglutinin and several other tracers, antibodies were not found to be anterogradely transported in the optic nerve.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号