首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物毒蛋白对真核细胞蛋白质生物合成的抑制主要是使核糖体失活,所以这类毒蛋白又称核糖体失活蛋白。其作用机制有两种类型:(1)核酸水解酶型(如α-Sarcin);(2)RNA N-糖苷酶型。这种酶的作用机制是近两年来才搞清楚的。它专一水解真核细胞核糖体28s RNA的第4324位腺苷酸的糖苷键,释放一个  相似文献   

2.
核糖体失活蛋白的结构功能与分布   总被引:7,自引:0,他引:7  
核糖体失活蛋白是一类在植物中较广泛存在的毒蛋白。植物核糖体失活蛋白具有RNAN-糖苷酶活力,可作用于核糖体RNA,使核糖体失去蛋白质合成的功能。根据一级结构,核糖体失活蛋白可分为两种类型。Ⅰ型核糖体失活蛋白由一条链组成,分子量在25—30 kDa之间。Ⅱ型核糖体失活蛋白由两条以二硫键相连的链(A、B链)组成,分子量在60 kDa左右。B链可以与细胞表面含半乳糖的受体结合,有助于A链进入细胞,作用于核糖体。目前至少已从9个科31种植物中分离纯化了Ⅰ型RIP。Ⅱ型RIP较少,仅在6科8种植物中发现。除了具有RNA N-糖苷酶活性,还发现一些核糖体失活蛋白可以切割超螺旋双链DNA,产生缺口环状和线状DNA。此外,一种Ⅰ型RIP,克木毒蛋白还具有超氧化物歧化酶活性。  相似文献   

3.
核糖体是由核糖体RNA和核糖体蛋白组成的复合体,其功能是参与蛋白质合成.SUMO化修饰的底物蛋白对核糖体的形成有重要调控作用.前期研究发现,KRAB型锌指蛋白Apak能特异地抑制p53所介导的凋亡通路.进一步研究发现,在核仁应激及癌基因激活条件下,抑癌蛋白ARF促进Apak发生SUMO化修饰并促使其移位于核仁.为了进一步探讨SUMO化修饰的Apak对核糖体RNA合成的调控功能,本研究通过Northern blot检测SUMO化修饰的Apak对核糖体RNA合成的影响,实时定量PCR检测核糖体RNA转录水平,RNA-Ch IP方法检测核糖体RNA与Apak蛋白的相互作用,结果表明,SUMO化修饰的Apak抑制47S核糖体RNA前体的合成且抑制RNA聚合酶Ⅰ介导转录的18S和5.8S r RNA的合成;在放线菌素D以及癌基因诱导下,促进Apak与18S,5.8S r RNA相互作用.本研究对理解Apak的功能和作用机制提供了新的依据,为深入研究KRAB型锌指蛋白家族分子对核糖体RNA的调控奠定了基础.  相似文献   

4.
天花粉蛋白(trichosanthin)是一种单链核糖体失活蛋白(ribosome-inactivating protein,RIP),它失活核糖体的机制属于RNA N-糖苷酶型。最近Li等发现天花粉蛋白可作用于超螺旋环状DNA,将其切割与解旋成缺口及线状分子,但并不作用于线状DNA。为了  相似文献   

5.
核糖体RNA拓扑学与RNA N-糖苷酶研究进展(上)   总被引:4,自引:0,他引:4  
核糖体RNA拓扑学的研究对阐明核糖体RNA(rRNA)在蛋白质生物合成中的作用具有重要的意义.RNA N-糖苷酶是一类核糖体失活蛋白.它只水解rRNA特定位置上一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活.Ricin A链是研究得最早和最详细的RNA N-糖苷酶,迄今已发现有二十五种核糖体失活蛋白具有RNA N-糖苷酶活性.RNA N-糖苷酶作用于28S rRNA的α-sarcin结构域,改变核糖体的构象而使其失活.  相似文献   

6.
核糖体失活蛋白专一地断裂28S rRNA第4 324位的腺嘌呤与核糖之间的N-糖苷键,具有特异破坏核糖体的结构,抑制蛋白质生物合成的功能。核糖体失活蛋白在医疗方面有极大的应用价值。为了能简单快速筛选出核糖体失活蛋白,本实验构建了一种包含核糖体失活蛋白识别位点的双荧光素酶质粒psiCHECKTM-2-F28RNA。用具有N 糖苷酶活性的苦荞凝集素(tartary buckwheat lectin,TBL)作用于psiCHECKTM-2-F28RNA质粒,电泳检测发现,TBL可以将质粒DNA由超螺旋型切割为缺刻型。将psiCHECKTM-2-F28RNA转染HCT116细胞,发现海肾/萤火虫荧光比值也明显降低,表明构建的质粒可以用于检测核糖体失活蛋白对细胞的毒性作用。当将psiCHECKTM-2-F28RNA中的GAGA序列中腺嘌呤分别突变后进行同样实验,确定该质粒中的GAGA为核糖体失活蛋白的识别位点。进一步构建包含GAGA特征序列的Wnt1-3′UTR区的质粒psiCHECKTM-2-Wnt1-3′UTR,实验也发现,在胞外和胞内TBL与psiCHECKTM-2-Wnt1-3′UTR都具有相互作用,表明细胞内具有GAGA序列的mRNA也可能成为核糖体失活蛋白的靶点。选用几种食源性作物中提取的蛋白质,分别与psiCHECKTM-2-F28RNA作用,进行体外检测,结果显示,该质粒能快速地筛选来源于不同生物的核糖体失活蛋白。这些结果表明,本实验构建的psiCHECKTM-2-F28RNA质粒,可用于核糖体失活蛋白的快速筛选和酶活性鉴定。  相似文献   

7.
核仁是位于细胞核内的非膜结构。电子显微镜下的核仁从形态上可以分为三层结构包括纤维中心区(FC)、高密度纤维区(DFC)和颗粒区(GC)。核仁内的蛋白有核糖体蛋白和非核糖体蛋白两种。利用蛋白质组学方法已经鉴定了350多种核仁蛋白,其中包括80多种核糖体蛋白。核仁是核糖体合成的场所,核仁中的非核糖体蛋白对核糖体的生物合成起关键调控作用。核仁不仅是细胞内通讯和核糖体:RNA加工的中心,而且在细胞周期、细胞增殖和衰老中起重要调控作用;核仁也是tRNA、mRNA和其它类型小分子RNA加工的场所。因此核仁是一个多功能的细胞生命活动中心。  相似文献   

8.
放射性同位素标记测定RNA N-糖苷酶活性的新方法   总被引:1,自引:0,他引:1  
核糖体失活蛋白(ribosome-inactivating protein,RIP)是一类抑制真核细胞蛋白质生物合成的毒蛋白。近几年发现,有相当一部分RIP的作用机制属于RNAN-糖苷酶(RNA NGlycosidase),如蓖麻毒蛋白A链(ricinA-chain)及一些单链RIP。它们能专一水解大鼠核糖体28 SRNA的第4324位腺苷酸的C-N糖苷键,释放一个腺嘌呤碱基,在相应的核糖Cl位上留下一个醛基。  相似文献   

9.
麻疯树核糖体失活蛋白基因的克隆和表达   总被引:14,自引:0,他引:14  
麻疯树(Jatropha curcas L.)核糖体失活蛋白(curcin)是存在于麻疯树种子中的一种毒性较强的蛋白,它与蓖麻毒蛋白和相思子毒蛋白的性质相似,属Ⅰ型核糖体失活蛋白。从麻疯树种子中分离得到一种分子量为28.2kD的蛋白质,其对无细胞系统中蛋白质合成的抑制活性较强,IC_(50)为(0.19±0.01)nmol/L,具有RNA N-糖苷酶活性。依据curcin的N端部分氨基酸设计简并引物,通过RT-PCR和5′-RACE技术从未成熟种子总RNA中克隆到curcin全长cDNA序列。该cDNA全长由1 173个碱基组成,包含一个编码293个氨基酸的前体蛋白,前42个氨基酸为信号肽。推测的多肽序列与测定的蛋白质N端序列相同,与多种已发表的Ⅰ型核糖体失活蛋白和Ⅱ型核糖体失活蛋白的A链有一定的同源性。将curcin的编码区与表达载体pQE-30相连后,转入大肠杆菌(Escherichia coil)M15菌株中得到了有效的表达。将表达的融合蛋白纯化后发现,它具有抑制无细胞系统蛋白质合成的能力。  相似文献   

10.
麻疯树(Jatropha curcas L.)核糖体失活蛋白(curcin)是存在于麻疯树种子中的一种毒性较强的蛋白,它与蓖麻毒蛋白和相思子毒蛋白的性质相似,属Ⅰ型核糖体失活蛋白.从麻疯树种子中分离得到一种分子量为28.2 kD的蛋白质,其对无细胞系统中蛋白质合成的抑制活性较强,IC50为(0.19±0.01)nmol/L,具有RNA N-糖苷酶活性.依据curcin的N端部分氨基酸设计简并引物,通过RT-PCR和5'-RACE技术从未成熟种子总RNA中克隆到curcin全长cDNA序列.该cDNA全长由1 173个碱基组成,包含一个编码293个氨基酸的前体蛋白,前42个氨基酸为信号肽.推测的多肽序列与测定的蛋白质N端序列相同,与多种己发表的Ⅰ型核糖体失活蛋白和Ⅱ型核糖体失活蛋白的A链有一定的同源性.将curcin的编码区与表达载体pQE-30相连后,转入大肠杆菌(Escherichia coil)M15菌株中得到了有效的表达.将表达的融合蛋白纯化后发现,它具有抑制无细胞系统蛋白质合成的能力.  相似文献   

11.
真核细胞聚核糖体RNA包含正在翻译蛋白的mRNA,比较肝癌与正常肝聚核糖体RNA(pRNA)的异同,对于了解癌细胞基因转录、翻译的分子过程和调控机理有着重要的意义。对真核细胞RNA复杂性的研究很多,但大多  相似文献   

12.
核糖 2′ O 甲基化修饰是真核生物核糖体RNA上的一种极为普遍的修饰方式。为了测定水稻 2 5S核糖体RNA上发生甲基化修饰的具体位点 ,设计并纯化了一系列与水稻 2 5S和酵母 2 8S核糖体RNA均配对的引物 ,在测定水稻核糖体RNA甲基化位点的同时 ,将酵母核糖体RNA甲基化位点的测定作为对照 ,在同一条件下 ,分别以水稻及酵母总RNA为模板进行dNTP浓度依赖的引物延伸反应。在测得的水稻甲基化位点中 ,有 3 1个位点是与酵母共有的 ,占酵母 2 8S核糖体RNA的甲基化位点总数的 80 %以上。另外 ,通过与已经测定的拟南芥 2 5S核糖体RNA上的甲基化位点进行比较 ,在水稻中又确定了与拟南芥相同的 5 4个甲基化位点。最终在水稻 2 5S核糖体RNA中 ,初步确定了 85个甲基化位点 ,并绘制了水稻 2 5S核糖体RNA的甲基化位点分布图。这些结果表明在不同的真核生物中 ,核糖体RNA上大部分位点核糖的甲基化修饰是保守的 ,而且亲缘关系越近 ,其保守性越强。结果还表明 ,高等植物核糖体RNA上有大量的核糖甲基化修饰位点 ,并且其中相邻的位点均被甲基化修饰的数量明显高于其他生物。所测得的甲基化位点将为进一步寻找植物中新的C/D框小分子核仁RNA(sonRNA)提供重要的依据  相似文献   

13.
上百种RNA修饰已经被发现,广泛分布于转运RNA(t RNA)、信使RNA(m RNA)、核糖体RNA(r RNA)及其他非编码RNA中。m RNA和t RNA上的一些RNA修饰被发现可逆动态调控且具有重要的生物学功能,如表观转录组修饰N~6-甲基腺嘌呤(m~6A)可以被甲基转移酶"写"、去甲基酶"擦除"及结合蛋白"读"。m~6A通过m~6A结合蛋白调控RNA加工代谢过程,从而传递m~6A对下游生理病理调控效应。该文拟从不同类型RNA出发,综述RNA修饰在m RNA、t RNA及其他RNA的代谢加工过程和相关功能中的调控作用,以及由此所影响的生理病理调控效应。  相似文献   

14.
核糖体一般可分为二大类。一类为80S真核型核糖体,另一类为70S 原核型核糖体。植物叶绿体中的核糖体属于后一类型。在低等植物叶绿体核糖体中,rR N A 分子通常只有23S、16S 和5S 三种,与原核生物核糖体基本相同。但是,70年代后期在高等植物叶绿体核糖体中,还发现了另一种小分子 RNA——4.5S rR N A。就象5.8S rR N A  相似文献   

15.
分析原核生物中RNA与蛋白质的相互作用,给了我们很多的信息和启示。到目前为止,大肠杆菌核糖体是研究最多的RNP复合物,而大肠杆菌中的谷氨酰胺基tRNA合成酶和相关的tRNA是目前唯一制成RNA一蛋白质共结晶,并揭示其结构的RNA一蛋白质复合物。最近在真核生物系统中的研究不仅发现了由RNA-蛋白质结合介导的基因表达调控的机理,而且鉴定出结合RNA的蛋白家族中存在有共同的短段(Common motifs)。本文拟对目前研究的饶有兴趣的5SRNA-结合蛋白复合物以及RNP-致序列进行阐述和讨论。  相似文献   

16.
核糖体 RNA 的生物功能、自我剪接与自我复制   总被引:2,自引:0,他引:2  
核糖体RNA在肽链合成的起始、延伸和终止等整个过程中都有重要的功能。RNA N-糖苷酶是一类核糖体失活蛋白;它只水解rRNA特定位置上的一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活。天花粉蛋白是一种核糖体失活蛋白。目前已知最小的ribozyme是人工合成的13寡聚核糖核苷酸。利用四膜虫ribozyme转磷酸酯的逆反应合成了一个42寡聚核糖核苷酸。这说明RNA可以催化RNA的合成。  相似文献   

17.
植物核糖体失活蛋白(ribosome-inactivating protein,RIP)是一类能作用于核糖体最大RNA的独特蛋白质.它是研究蛋白质生物合成中核糖体RNA结构与功能的有力工具.利用RIP能在DNA中脱去一些腺嘌呤碱基使超螺旋DNA解旋的特点,分别以常用的质粒PUC18、PUC19和PBR322 DNA为底物,建立了测定RIP酶活性的一种新方法,其灵敏度是50ng(天花粉蛋白)和5ng(还原型的辛纳毒蛋白),酶催化反应的时间是60min.这个新方法具有方便、快捷、灵敏的特点,避免了常用方法中制备核糖体、提取RNA的仪器和技术条件的限制,检测的时间由原来的几天缩短到约120min,大大地降低了检测的费用,为广泛和深入地研究RIP提供了有利的条件.  相似文献   

18.
苦瓜的核糖体失活蛋白   总被引:6,自引:0,他引:6  
核糖体失活蛋白是一类专一修饰核糖体的大亚基rRNA从而抑制蛋白质生物合成的蛋白毒素,可分为Ⅰ-型和Ⅱ-型两种类型。苦瓜中含有多种Ⅰ-型核糖体失活蛋白,如α-苦瓜素,β-苦瓜素和MAP30等,这些蛋白成分具有抗肿瘤、抗病毒和抗艾滋病等功能,因而近年来引起人们广泛的关注。对苦瓜核糖体失活蛋白的研究进展和应用前景进行了综述。  相似文献   

19.
拟南芥RPS14(Ribosomal protein S14)是从拟南芥中分离出的一种核糖体蛋白,是核糖体40S亚基的组成成分,属于S11P核糖体蛋白家族,主要负责RNA转录后加工。提取拟南芥总RNA,用RT-PCR技术得到RPS14全长基因,经T-A克隆插入到pEASY-T3载体上。利用亚克隆法成功构建pGEX-6P-1-RPS14原核表达质粒。GST-RPS14融合蛋白在大肠杆菌BL21(DE3)中表达,分子量约为43 kD。运用同样方法构建pET-28a-AK6原核表达质粒,获得大小约为26 kD的HIS-AK6融合蛋白。运用体外pull-down技术,并用SDS-PAGE和Western blot进行验证,证明拟南芥RPS14蛋白与AK6蛋白之间存在相互作用。因此,推测拟南芥的AK6与RPS14蛋白共同参与核酸代谢过程,影响RNA转录后加工,进而抑制拟南芥茎细胞的生长,使植株表现矮小特征。  相似文献   

20.
RNA修饰是指发生在RNA上的各种修饰形式。自然界中的RNA修饰广泛存在于A、U、C、G四类核苷酸上,此外,极少的RNA修饰发生在次黄嘌呤核苷(I)上。目前已经在古细菌、细菌、病毒和真核生物中发现超过140种的RNA转录后修饰形式。在各种类型的RNA修饰中,甲基化修饰占到了三分之二,这些修饰广泛存在于各种RNA类型中,包括信使RNA(mRNA)、转运RNA(tRNA)、核糖体RNA(rRNA)、核内小RNA(snRNA)、核仁小RNA(sno RNA)、微小RNA(miRNA)、小干扰RNA(siRNA)、piwi蛋白相互作用的RNA(piRNA)和长非编码RNA(lncRNA)等。现介绍主要的RNA修饰类型,并对其调控蛋白进行归纳总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号