首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
F. B. P. Wooding 《Planta》1968,83(1):99-110
Summary The fine structure of phloem formed spontaneously in callus grown on leaf explants of Pinus pinea is very similar to that found in the stem. On the other hand very little callose is formed on callus phloem pores, and their structure is thus easier to investigate. No trace of fibrils typical of the lumen of angiosperm phloem has been found at any stage of phloem development. The usefulness of callus phloem in studies on phloem structure and function is discussed briefly.  相似文献   

3.
Wetmore , Ralph H. (Harvard U., Cambridge, Mass.), and John P. Rier . Experimental induction of vascular tissues in callus of angiosperms . Amer. Jour. Bot. 50(5): 418–430. Illus. 1963.—Callus tissues in established maintenance culture lack morphological and physiological organization. Such callus consists of homogeneous parenchyma. Movement of auxin and sugar, therefore, must be along diffusion gradients. The only vascular tissues occurring in callus are induced. Experimental induction of vascular tissues has been successful in callus of 3 sp. of the Oleaceae: a tree, Fraxinus americana, and 2 shrubs, Syringa vulgaris and Ligustrum vulgare; another tree, Salix purpurea, var. lambertiana; a vine, Parthenocissus tricuspidata; and an herb, Helianthus tuberosus. In each of these species, an auxin (IAA or NAA in these studies) and a sugar (sucrose or glucose in these studies) prove necessary for the induction and complete differentiation of xylem and phloem in callus tissues. Varying concentrations of sugar alter the proportions of xylem to phloem: low concentrations, 1.5%–2.5%, favor xylem formation; high, 3%–4%, favor phloem. Middle concentrations, 2.5%–3.5%, favor the presence of xylem and phloem, usually with a cambium between. The almost universal association of xylem and phloem may have its explanation in this middle concentration of sugar. Grafting of apices into callus or direct application of appropriate concentrations of an auxin and a sugar in agar to the surface of callus causes nodules of vascular tissue to be formed, mostly in a circular pattern when seen in section transverse to the axis of orientation of the callus in the medium. The diameter of this circle varies directly with the auxin concentration at the place of application, 0.05 mg/liter giving a narrow, and 1 mg/liter, a wide pith. In individual nodules, xylem is characteristically oriented towards the center of the callus and the phloem towards the outside. Variable cross-sectional views of nodule distribution in calli under different treatments suggest experimental approaches to understanding stelar patterns. The induction and differentiation in callus of xylem and phloem tissues has no relation to conduction. Any use of vascular tissues can occur only after their induction.  相似文献   

4.
Summary Protein changes occurred in callus cells of hypersensitive tobacco (Nicotiana tabacum var. Xanthi-nc) 72 hr after inoculation with tobacco mosaic virus and incubation on a minimal growth medium. Two protein bands, serologically related to viral coat protein, were obtained from extracts of infected cells following electrophoresis on 7% and 10% polyacrylamide gels. An additional, slower migrating protein, perhaps due to virus-induced stimulation of a host protein, also was detected. Although local lesions appeared on callus after 40 hr of incubation, four proteins previously reported in lesion-bearing hypersensitive tobacco leaves were not found. The possible significance of this and the usefulness of a callus-TMV system as a tool to study virus-induced protein changes are discussed. Michigan Agricultural Experiment Station Journal Paper No. 7191.  相似文献   

5.
Comparative localization of three classes of cell wall proteins.   总被引:15,自引:1,他引:14  
The localization of the cell wall proline-rich proteins (PRPs), and the gene expression of the cell wall glycine-rich proteins (GRPs) and the hydroxyproline-rich glycoproteins (HRGPs) were examined in several dicot species. The PRPs are accumulated in the corner walls of the cortex where several cells are joined together and in the protoxylem cell walls of 3-day-old soybean root. In 1-month-old soybean plants, the PRPs are specifically deposited in xylem vessel elements of the young stem, and they are accumulated in both phloem fibers and xylem vessel elements and fibers of the older stem. Likewise, the PRPs are localized in xylem vessel elements and fibers in tomato, petunia, potato and tobacco stems. They are also found in outer and inner phloem fiber cell walls of tomato stem and in outer phloem fiber cell walls of petunia stem. The gene expression of the HRGPs and the GRPs is developmentally regulated in tomato, petunia and tobacco stems. HRGP mRNAs are abundant in outer and inner phloem regions, while GRP mRNAs are present mostly in primary xylem and in the cambium region. Immunocytochemical localization showed that the GRPs have a localization pattern similar to that of the PRPs in tomato, petunia and tobacco stems.  相似文献   

6.
The most abundant extracellular protein produced by Phytophthora parasitica var nicotianae at early stages of rapid growth in culture has a molecular weight of 46 kilodaltons and has been designated Ppn 46e. Culture conditions for the production of this protein have been optimized and the protein has been purified by gel filtration and ion-exchange chromatography. Ppn 46e is a soluble, acidic protein (pI 4.67). The amino acids Asx (aspartic acid or asparagine), alanine, glycine, Glx (glutamic acid or glutamine), and serine are the most abundant at 13.4%, 12.3%, 12.1%, 9.3%, and 9.3% of the residues, respectively. The purified protein is, by weight, 1.8% glucose, 1.6% mannose, and 0.5% galactose. A bioassay for Ppn 46e based on tobacco callus has been developed. In this assay as little as 20 nanograms (4.3 × 10−13 mole) Ppn 46e causes the accumulation of the sesquiterpenoid phytoalexin, capsidiol, as estimated by gas chromatography. Levels of capsidiol of 25 micrograms per gram fresh weight were elicited by 80 nanograms Ppn 46e per callus piece. Pretreatment of the protein with either pronase or by boiling resulted in a loss of elicitor activity. Periodate treatment, which inactivates glucan elicitors, did not affect the ability of Ppn 46e to cause capsidiol accumulation. Monospecific antibodies to Ppn 46e were raised in mice. Western blotting experiments employing these antibodies showed that Ppn 46e was present in infected tobacco plants. Dot blotting experiments revealed the presence of the Ppn 46e epitope(s) in Phytophthora megasperma, P. cactorum, P. cinnamomi, and P. infestans but not in Fusarium.  相似文献   

7.
Changes in isoperoxidases during shoot formation in tobacco callus   总被引:1,自引:0,他引:1  
Summary Shoot formation in tobacco (Nicotiana tabacum L.) callus is accompanied by an increase in peroxidase activity which takes a form similar to a sigmoid curve. The “stationary” phase coincide with the period of organ formation. Characteristic changes in isoperoxidase pattern are found in the shoot-forming part of the callus. These changes are different from those in the nonshoot-forming part or in gibberellin-treated tissue, which does not form shoots.  相似文献   

8.
Plant viruses are composed of diverse genomes (e.g., RNA or DNA) encoding proteins that vary widely in sequence. It is becoming clear, however, that some apparently unrelated viral proteins have similar functions. The P6 protein encoded by Cauliflower mosaic virus (CaMV) and the 126-kDa protein encoded by Tobacco mosaic virus (TMV) are examples of this convergence in protein function. Although having no apparent sequence similarity, both proteins are pathogenicity determinants during infection, are components of novel intracellular cytoplasmic inclusions and suppress RNA silencing. Here we review our recent results demonstrating an additional novel convergent activity between these proteins: both proteins traffic along the actin cytoskeleton (microfilaments). We also discuss results showing a unique property of the P6 protein: a non-mobile strong association with microtubules. Lastly, we discuss the potential mechanism by which the P6 and 126-kDa proteins traffic along microfilaments. We provide new results suggesting that actin filament polymerization-driven movement does not support 126-kDa protein transport, thus leading to a focus on myosins as the driving force for this movement.Key words: actin polymerization, cytoskeleton, cauliflower mosaic virus, microfilaments, microtubules, myosin, tobacco mosaic virus, virus movement, intracellular transport  相似文献   

9.
Immediately after their stylets penetrate a phloem sieve element, aphids inject saliva into the sieve element for approximately 30–60 s before they begin to ingest phloem sap. This salivation period is recorded as waveform E1 in electrical penetration graph (EPG) monitoring of aphid feeding behavior. It has been hypothesized that the function of this initial period of phloem salivation is to reverse or prevent plugging of the sieve element by one of the plant's phloem defenses: formation of P‐protein plugs or callose synthesis in the sieve pores that connect adjacent sieve elements. This hypothesis was tested using the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and faba bean, Vicia faba L. (Fabaceae), as a model system, and the results do not support the hypothesis. In legumes, such as faba bean, P‐protein plugs in sieve elements are formed by dispersal of proteinaceous bodies called forisomes. Contrary to the hypothesis, the great majority of sieve element penetrations by pea aphid stylets do not trigger forisome dispersal. Thirteen sieve elements were cryofixed early in phloem phase before the aphids could complete their salivation period and the forisomes were not dispersed in any of the 13 samples. However, in these samples, the aphids completed on average a little over half of their normal E1 salivation period before they were cryofixed. Thus, it is possible that sieve element penetration triggered forisome dispersal in these samples but the abbreviated period of salivation was still sufficient to reverse dispersal. To rule out this possibility, 17 sieve elements were cryofixed during R‐pds, which are an EPG waveform associated with sieve element penetration but without the characteristic E1 salivation that occurs during phloem phase. In 16 of the 17 samples, the forisomes were not dispersed. Thus, faba bean sieve elements usually do not form P‐protein plugs in response to penetration by pea aphid stylets. Consequently, the characteristic E1 salivation that occurs at the start of each phloem phase does not seem to be necessary to prevent a plugging response because penetration of sieve elements during R‐pds does not trigger forisome dispersal despite the absence of E1 salivation. Furthermore, as P‐protein plugs do not normally form in response to sieve element penetration, E1 salivation that occurs at the start of each phloem phase is not a response to development of a P‐protein plug. Thus, the E1 salivation period at the beginning of the phloem phase appears to have function(s) unrelated to phloem sealing.  相似文献   

10.
Summary The localization of HSP90 (heat-shock protein 90) was analyzed with respect to the microtubular cytoskeleton by double immunofluorescence and confocal laser microscopy in tobacco VBI-O cells during axial cell division and elongation. HSP90 was observed to be colocalized with cortical and radial microtubules and the nuclear envelope in premitotic cells, with the preprophase band, and with the phragmoplast. The HSP90 epitope could not be detected in mature division spindles. The association of the HSP90 epitope with radial and cortical microtubules was not continuous in space. HSP90 was organized in discrete foci that were found to be aligned with microtubules, and the distance between these foci increased, when the cells entered the elongation phase. Elimination of microtubules by drugs resulted in a loss of cell axiality and alignment of the HSP90 epitope. Together with biochemical data demonstrating binding of tobacco HSP90 to tubulin dimers these data indicate a possible role of HSP90 in the organization of microtubules.Abbreviations EPC ethyl-N-phenylcarbamate - FITC fluorescein isothiocyanate - HSP90 heat-shock protein 90 - MAP microtubuleassociated protein - TRITC tetramethylrhodamine B isothiocyanate  相似文献   

11.
Specific antibodies to a protein P1 Mr approximately equal to 63,000) from Chinese hamster ovary cells, which is affected in mutants resistant to the microtubule inhibitor, podophyllotoxin, and behaves like a microtubule-related protein by certain criteria [14], have been raised. The antibody reacts specifically with the P1 protein in one- and two-dimensional immunoblots, and a cross-reacting protein of similar molecular mass and electrophoretic mobility is also found in cells from various vertebrate and invertebrate species. The observed similarity in the peptide maps of the cross-reacting protein from human, mouse, Chinese hamster and chicken cells indicates that the structure of this protein should be highly conserved. However, no P1-antibody cross-reacting protein was observed in plants (corn, mung), fungus (Neurospora crassa), yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli and Salmonella typhimurium). Immunofluorescence studies with the P1-antibody show that, in interphase cells of various cross-reacting species, it bound specifically to mitochondria which were associated and distributed on and along the length of microtubules. Similar association and codistribution of mitochondria and microtubules were not observed in mitotic cells. Some implications of the mitochondrial localization of the protein P1 and the observed association between microtubules and mitochondria are discussed.  相似文献   

12.
During the transition of tobacco (Nicotiana tabacum) pith tissue to callus tissue, there were changes in the composition of the soluble amino acid pools, in the distribution of amino acids between pool and protein, and in the synthesis, accumulation, and degradation of proteins. The size of the leucine pool decreased from 90 nanomoles per gram fresh weight in fresh pith to 20 nanomoles in 24-hour cultured pith, followed by a return to 90 nmoles in pith cultured longer than 5 days. The latter value is the same as that reported for exponentially growing callus cells. Many other pool amino acids changed as dramatically. However, they always approached callus levels after 5 days of culturing. The total amino acid content of pith tissue (the sum of both pool and protein) remained unchanged during culturing. The value for total amino acid content (34 to 42 nanomoles per gram fresh weight) was also similar to that found in callus. The distribution of amino acids between pool and protein did change during culturing. The transition of pith tissue with 88% of its total amino acids free in the soluble pool to callus with 92% of its amino acids in protein was further characterized by changes in protein metabolism. Both protein synthesis and accumulation increased over the first 50 hours in culture to a maximum rate of 45 milligrams protein synthesized gram protein−1 hour−1. After 50 hours in culture, the rate of protein accumulation decreased to equal the rate of fresh weight accumulation (10 mg g−1 hour−1). However, protein synthesis continued at a high rate for several days, suggesting protein degradation was turned on by this time. By 5 days protein synthesis had decreased to a rate similar to that of callus.  相似文献   

13.
T A Thorpe  T Gaspar 《In vitro》1978,14(6):522-526
Shoot formation in tobacco (Nicotiana tabacum L.) callus is accompanied by an increase in peroxidase activity which takes a form similar to a sigmoid curve. The "stationary" phase coincides with the period of organ formation. Characteristic changes in isoperoxidase pattern are found in the shoot-forming part of the callus. These changes are different from those in the nonshoot-forming part or in gibberellin-treated tissue, which does not form shoots.  相似文献   

14.
Numerous studies have shown that auxin induces adventitious root initiation in stem explants from a variety of species, including tobacco. A dominant, monogenic mutation previously identified in tobacco ( Nicotiana tabacum cv. Xanthii), rac , confers tenfold auxin resistance to mesophyll-derived cell suspensions and an impaired primary root development phenotype to seedlings. Results presented here demonstrate that adventitious root formation does not occur when heterozygous and homozygous rac stem cuttings are treated in vitro with indole-3-butyric acid (IBA) concentrations ranging from 0.5 μ M to 500 μ M . Histological analysis showed that some phloem parenchyma or inner cortical parenchyma cells in wild-type stem cuttings undergo adventitious root morphogenesis when they are treated with 5 μ M IBA. The same cell types in heterozygous and homozygous rac stem cuttings undergo mitoses in response to auxin, but never form adventitious root meristems. The lack of adventitious root initiation in rac stem cuttings is phenotypically distinct from the aberrant primary root development in rac seedlings. The rac mutation appears to block an essential process for auxin induction of adventitious root initiation but not cell division in phloem parenchyma or inner cortical parenchyma cells. Comparisons of rac heterozygous and homozygous seedling primary root length and callus formation in response to auxin in stem cuttings indicate that rac copy number is correlated to the degree of expression of these two phenotypes.  相似文献   

15.
We used dedicated magnetic resonance imaging (MRI) equipment and methods to study phloem and xylem transport in large potted plants. Quantitative flow profiles were obtained on a per-pixel basis, giving parameter maps of velocity, flow-conducting area and volume flow (flux). The diurnal xylem and phloem flow dynamics in poplar, castor bean, tomato and tobacco were compared. In poplar, clear diurnal differences in phloem flow profile were found, but phloem flux remained constant. In tomato, only small diurnal differences in flow profile were observed. In castor bean and tobacco, phloem flow remained unchanged. In all plants, xylem flow profiles showed large diurnal variation. Decreases in xylem flux were accompanied by a decrease in velocity and flow-conducting area. The diurnal changes in flow-conducting area of phloem and xylem could not be explained by pressure-dependent elastic changes in conduit diameter. The phloem to xylem flux ratio reflects what fraction of xylem water is used for phloem transport (Münch's counterflow). This ratio was large at night for poplar (0.19), castor bean (0.37) and tobacco (0.55), but low in tomato (0.04). The differences in phloem flow velocity between the four species, as well as within a diurnal cycle, were remarkably small (0.25-0.40 mm s(-1)). We hypothesize that upper and lower bounds for phloem flow velocity may exist: when phloem flow velocity is too high, parietal organelles may be stripped away from sieve tube walls; when sap flow is too slow or is highly variable, phloem-borne signalling could become unpredictable.  相似文献   

16.
Transmembrane ferricyanide reduction in whole cells of normal and of transformed tobacco (Nicotiana tabacum) callus tissue was compared. It was found that low concentrations of indoleacetic acid (IAA, 0.1 μM), gibberellic acid (GA, 0.3 μM), and benzyl adenine (BA, 0.03 μM) stimulate external ferricyanide reduction in normal tobacco callus cells, but inhibit this reaction up to 67% in transformed cells when hormones are applied to cells 10 min prior to assay. Higher concentrations of these growth regulators (1 μM or greater) inhibit transmembrane ferricyanide reduction in both types of cells, with the exception of IAA, giving an initial stimulation of the rate (12%), followed by 24% inhibition after 2 min. The observed external ferricyanide reduction by whole tobacco callus cells may be explained on the basis of a transplasmalemma redox system, which may be associated with the iron metabolism of these cells.  相似文献   

17.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

18.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

19.
The flavanone glucosides dihydrowogonin-7-glucoside, eriodictyol-7-giucoside and prunin (naringenin-7-glucoside) were isolated, identified and quantitatively determined in callus cultures and phloem of Prunus avium L. cvs. Sam and Schneiders. These substances were isolated from callus tissue, where they were most abundant. The identification included TLC, HPLC and spectrophotometry in conjunction with hydroxylation and benzoylation. Elevation of sucrose concentrations in the media from 1 to 4% (w/w) resulted in a 3- to 4-fold increase in prunin. A similar response, although much less pronounced, was observed for eriodictyol-7-glucoside, while dihydrowogonin-7-glucoside was not enhanced under these conditions. Addition of benzyladenine to media of tissue cultures also caused an increase in prunin and eriodictyol-7-glucoside levels. Both of these flavanones also increased in phloem above and below a constriction of Prunus stems. Administration of benzyladenine into Prunus stems resulted in a 4-fold increase of prunin in the phloem.  相似文献   

20.
Homology between chitinases that are induced by TMV infection of tobacco   总被引:1,自引:0,他引:1  
Recently, four chitinases have been detected in tobacco mosaic virus (TMV) infected tobacco: two acidic chitinases that were identified as pathogenesis-related (PR) proteins P and Q and two basic chitinases (Legrand et al., Proc.Natl. Acad. Sci. USA, in press). Here, it was shown that P and Q are closely serologically related but not related to other known acidic tobacco PR proteins. Antisera to P and Q were used to characterize translation products of TMV-induced mRNAs that were hybrid-selected with cDNA clones described previously (Hooft van Huijsduijnen et al., EMBO J 5: 2057–2061, 1986). In this way cDNA clones corresponding to the acidic and basic chitinases were identified. The partial amino acid sequences of the acidic and basic tobacco chitinases that were represented in the clones, showed an approximately 70% homology to each other and to the sequence of a bean chitinase. Although the acidic and basic chitinases differ in apparent molecular weight, they were found to have homologous C-termini.Hybridization of cDNA probes to genomic blots indicated that the acidic and basic chitinases are each encoded by two to four genes in the amphidiploid genome of Samsun NN tobacco. A similar complexity was found for the genes encoding the tobacco PR protein that is homologous to the sweet-tasting protein thaumatin and to the bifunctional trypsin/-amylase inhibitor from maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号