首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated into wounded areas of the culture dish. Quantitative autoradiography of 35S-sulfate-labeled single-scratch wounded cultures demonstrated a 2-4-fold increase in the number of silver grains over migrating cells near the wound edge when compared to cells remote from the wound edge. Furthermore, when cell proliferation was blocked by inhibition of DNA synthesis, the increase in 35S-sulfate incorporation into proteoglycan after wounding was unaffected. These data indicate that cell division is not required for the modulation of proteoglycan synthesis to occur after wounding. Characterization of the newly synthesized proteoglycan by ion-exchange and molecular sieve chromatography demonstrated that heparan sulfate proteoglycan constitutes approximately 80% of the labeled proteoglycan in postconfluent cultures, while after wounding, chondroitin sulfate proteoglycan and/or dermatan sulfate proteoglycan (CS/DSPG) increases to as much as 60% of the total labeled proteoglycan. These results suggest that CS/DSPG synthesis is stimulated concomitant with the stimulation of endothelial cell migration after wounding.  相似文献   

3.
Chondrocytes obtained from epiphyseal cartilage of fetal guinea pigs or ear cartilage of young rabbits were cultured in monolayer. The influence of colchicine, cytochalasin B, and p-nitrophenyl-β-d-xylopyranoside on secretion of proteoglycans was investigated. Radioactive sulfate was used as a precursor. As observed previously in other systems, β-d-xylosides initiated the synthesis of free chondroitin sulfate chains, competing with the endogenous proteoglycan core protein acceptor. The molecular weights of the chondroitin sulfate chains synthesized both on the xyloside and on the core-protein acceptor in maximally stimulated cells were similar and significantly lower than in proteoglycans synthesized in the absence of xyloside. The size of the chondroitin sulfate chains synthesized on the xyloside was inversely related to the concentration of this compound. This finding suggests that the chain length is dependent on the ratio between available acceptor and chain-lengthening enzymes or precursors. Cytochalasin B, a microfilament-modifying agent, inhibited proteoglycan synthesis, without any effect on secretion. Cells treated with cytochalasin B could be stimulated with β-d-xyloside to synthesize free chondroitin sulfate chains to the same relative degree as cells with intact microfilaments. Colchicine, an antimicrotubular agent, partially inhibited synthesis and secretion of proteoglycan. However, cells treated with colchicine could be stimulated with β-d-xyloside to synthesize and secrete free chondroitin sulfate chains to about the same relative degree as cells with intact microtubules. The data suggest that microtubules may have a facilitatory rather than an obligatory role in the secretion of proteoglycans and that at least part of the effect of colchicine is located at or after the site of glycosaminoglycan synthesis.  相似文献   

4.
Human blood derived mononuclear cell (MC) cultures required concanavalin A (Con A) stimulation to synthesize and secrete into the medium high levels of a protease-resistant proteoglycan (PG) containing predominantly chondroitin sulfate (CS), which was elaborated largely by T-cells in culture. PG and DNA synthesis were studied in MC cultures in the absence and presence of Con A as well as serum and some biologically active polypeptide factors. In the presence of Con A, stimulation of PG synthesis was substantially greater in T-cell enriched cultures than in B-cell enriched cultures. DNA synthesis was also stimulated in the presence of Con A. This stimulation was concentration-dependent, but required the presence of serum for additional responses. DNA and cell proliferation were stimulated by interleukin-2 (IL-2), but PG production was not stimulated by conditioned media, IL-1, IL-2, IL-3, or transforming growth factor-beta (TGF-beta). Our results indicate that the elaboration of PG from T-cells of human MC is independent of the effects of regulatory peptides on cell proliferation and DNA synthesis.  相似文献   

5.
1. Human synovial fibroblastic cells were cultured in the presence and absence of an extract from bovine bone containing "matrigenin" activity. The rate of incorporation of radioactivity into the glycosaminoglycans of the medium of "matrigenin"-treated cultures increased after 24 hr of incubation, compared to "controls". 2. Higher serum concentrations had a greater effect on the incorporation of radioactivity into hyaluronic acid synthesized by "matrigenin"-treated cultures, than by "controls". 3. Incorporation of radioactive precursors into the proteoglycans isolated from the medium was greater in the "matrigenin"-treated cultures than in "controls". The synthesis of a large mol. wt proteoglycan was specifically stimulated.  相似文献   

6.
The synthesis and secretion of chondroitin sulphate proteoglycan (CSPG) was examined in human muscle cultures during myogenesis prior to myoblast fusion and following myotube formation. Results from this study demonstrate that the major CSPG secreted into the medium had a Kav of 0.15 on Sephacryl 500 (exclusion limit of 10(7) Da) and contained predominantly unsulphated residues in mononucleated cell cultures but these became increasingly sulphated in postfusion cultures. Fibroblasts synthesised small amounts of a smaller molecular weight CSPG indicating that the Kav 0.15 proteoglycan is solely synthesised by cells of the myogenic lineage. These findings illustrate that sulphation of CSPG is developmentally regulated during myogenesis of human muscle cells grown under differentiating conditions.  相似文献   

7.
Evidence is provided which demonstrates that conditioned media of cultured endothelial cells derived from human umbilical veins contained a factor which stimulated peripheral blood mononuclear cell [3H]thymidine uptake. A dose-dependent response in peripheral blood mononuclear cell [3H]thymidine uptake was obtained when cells were incubated with increasing concentrations of supernatant of endothelial cell cultures. Studies on temporal kinetics demonstrated that stimulatory activity was evident when mononuclear cells had been incubated with endothelial cell supernatant for 120 hr or more. Preliminary characterization showed the growth immunoregulatory factor to have a molecular weight greater than 100,000 Da.  相似文献   

8.
We have studied expression of alpha 1-protease inhibitor (alpha 1-PI) by human mononuclear cells. alpha 1-PI was detected on 50% of freshly isolated peripheral mononuclear cells. Unless a proliferative stimulus was provided, alpha 1-PI subsequently disappeared from the cell surfaces. Plant mitogens, periodate, neuraminidase-galactose oxidase, or allogeneic cells all were effective stimuli of alpha 1-PI expression. Concanavalin A stimulated de novo synthesis of alpha 1-PI in cell cultures containing both lymphocytes and mononuclear phagocytes, and alpha 1-PI simultaneously appeared on surfaces of activated lymphocytes. Inhibition of protein synthesis by cycloheximide or monocyte depletion abolished de novo alpha 1-PI synthesis, but only monocyte depletion inhibited alpha 1-PI expression. Lymphocytes, but not monocytes, displayed saturable binding of radioiodinated alpha 1-PI. The data are consistent with the interpretation that human mononuclear phagocytes synthesize and secrete alpha 1-PI. When protein synthesis is inhibited, mitogenic stimuli may provoke release of previously synthesized alpha 1-PI from mononuclear phagocytes. Secreted alpha 1-PI then may bind to specific lymphocyte cell surface receptors. This pattern of alpha 1-PI synthesis, secretion, binding, and expression on lymphoid cell surfaces appears to be a common characteristic of many immunologic reactions in vitro.  相似文献   

9.
The ability of mononuclear leukocytes to synthesize and secrete proteoglycans was evaluated. Using radiolabeling with H2 35SO4, it is shown that peripheral blood mononuclear cells (PBMC) and their major subpopulations (B cells, T cells, and monocytes), as well as mouse spleen cells, all secreted easily detectable proteoglycan. After 24-h labeling periods, 90% of macromolecular 35S could be detected in culture media. This material was primarily (greater than 95%) chondroitin-4-sulfate proteoglycan (CSPG). Production and secretion of CSPG could be stimulated more than 200% in PBMC and 300% in T cell populations by high concentrations of concanavalin A and phorbol 12- myristate-13-acetate; lipopolysaccharide induced a small (twofold) but reproducible increase in CSPG secretion by adherent mononuclear leukocytes. The CSPG secreted by PBMC was relatively small in size compared to chondrocyte CSPG (130,000 daltons vs. 2-4 million daltons) but possessed similar sizes of glycosaminoglycan chains and greater solubility in low ionic strength solutions. This sulfated polyanion, which was produced endogenously by leukocytes and was actively secreted, might function as a co-mediator or "second messenger" in certain immune responses.  相似文献   

10.
Despite the growing evidence implicating proteoglycans in the control of cell proliferation and differentiation, little is known about the factors that control their metabolism in neoplasia or the mechanisms through which these macromolecules may influence neoplastic growth. The primary objective of the present study was to test whether human colon carcinoma cells released soluble mediators capable of stimulating the synthesis of proteoglycans in normal colon fibroblasts in vitro. Serum-free medium conditioned by colon carcinoma cells (TCM) was capable of stimulating several-fold the synthesis and secretion of proteoglycans in normal colon fibroblasts without inducing a mitogenic response. This effect was a true stimulation of proteoglycan biosynthesis since the kinetics of turnover were identical in the presence or absence of TCM. Characterization of the proteoglycans synthesized in the absence of TCM revealed that colon fibroblasts synthesized at least three species of proteoglycans including a heparan sulfate proteoglycan which was associated primarily with the cell layer and two populations of proteoglycans which were predominantly released into the medium and contained chondroitin-dermatan sulfate side chains. When fibroblasts were exposed to TCM, they synthesized and released higher amounts of proteoglycans which had overall similar density, molecular weight, and polydispersity but differed from controls in that they contained significantly higher proportions of chondroitin sulfate side chains. Partial characterization of TCM strongly indicated that the stimulatory activity comprised a family of polypeptides, with molecular weight between 5.4 and 6.0 X 10(5), which were heat stable and acid/alkali labile. Neoplastic modulation of proteoglycan metabolism in normal mesenchymal cells may represent an additional mechanism through which tumor cells can alter their surrounding environment.  相似文献   

11.
Interactions between interleukin 8 (IL-8) and endothelial cells play an important role in the emigration of mononuclear cells from the blood into areas of inflammation. We examined the ability of specific second-line antirheumatic drugs to regulate (IL-8) gene expression and protein secretion in interleukin 1 (IL-1) stimulated human umbilical vein endothelial cells and peripheral blood mononuclear cells. The drugs sodium aurothiomalate, D-penicillamine and sulphasalazine were all able to modulate IL-8 mRNA synthesis in and protein secretion from endothelial cells. A bimodal effect was observed: at low concentrations IL-8 was suppressed, whereas higher concentrations resulted in an increased IL-8 production. In endothelial cells, treatment with hydrocortisone led to a linear suppression of IL-8 production in concentrations ranging from 0.5 micrograms/ml up to 500 micrograms/ml. Sulphapyridine, auranofin, hydroxychloroquine and methotrexate, had no effect on IL-8 secretion in endothelial cells. By contrast, 5-aminosalicylic acid induced a threefold increase in the IL-8 release. In peripheral blood mononuclear cells it was only possible to suppress the IL-8 production by hydrocortisone treatment. These results indicate that suppression of IL-8 production in endothelial cells could be an important factor in the mode of action for a number of second-line antirheumatic drugs.  相似文献   

12.
Collagenase secretion was studied on cultures of rabbit articular chondrocytes. Differentiation of the cells was assessed by characterizing the type of 3H-labelled collagen produced during treatment with (1) conditioned media from rabbit peritoneal macrophages and human blood mononuclear cells, and (2) with retinol, a potent cartilage resorbing agent in tissue culture. Conditioned media stimulated collagenase secretion. Total collagen synthesis was reduced due to a decrease of synthesis of alpha 1 chains; the amount of alpha 2 chains synthesized was unchanged. This is thought to be due to a reduction in type II synthesis. Retinol did not stimulate collagenase secretion. Total collagen synthesis was reduced by retinol. alpha 2 chain synthesis, however, was significantly increased, suggesting a switch of collagen synthesis in favor of type I collagen, and therefore, dedifferentiation. These results demonstrate that dedifferentiation of chondrocytes with respect to collagen synthesis is not necessarily associated with a stimulation of collagenase secretion.  相似文献   

13.
The effect of Kupffer cells on natural killer (NK) cell-mediated cytotoxicity was examined. Kupffer cells prepared from rat liver suppressed NK activity against K562 cells and other tumor cell lines through a soluble factor secreted into the culture supernatant. When human peripheral blood mononuclear cells were incubated with the Kupffer cell-culture supernatant, a significant reduction of the cytotoxic activity was observed in the 6-hr chromium-release assay. This activity was dose dependent and was evident at various effector/target cell ratios. Lipopolysaccharide stimulated generation of the suppressive factor released from Kupffer cells in a dose-dependent manner. Suppression of the NK activity was observed when the Kupffer cell-culture supernatant was present in the assay system, whereas pretreatment of effector/target cells with the supernatant had minimal inhibitory effects. Autologous monocytes in human peripheral mononuclear cells were not related to this suppression. The suppressive factor in the fraction had a molecular weight below 10,000. Indomethacin, an inhibitor of prostaglandin synthesis, ameliorated the suppressive effects. These results suggest that Kupffer cells may modulate NK activity by producing PGs (E1, E2, and F2 alpha).  相似文献   

14.
15.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

16.
Using our enzyme immunoassay system developed for recombinant hNGF, we examined the synthesis and secretion of human NGF (hNGF) by human fibroblast (WS-1) cells. The amount of the factor secreted by WS-1 cells increased linearly and a significant amount of NGF was detected in the conditioned medium of WS-1 cultures. WS-1 NGF showed properties identical to those of recombinant human NGF in immunoreactivity and molecular weight. An increase in cell density or the withdrawal of serum from the culture medium caused a drastic decrease in the rate of NGF secretion. These results suggest that WS-1 cells are able to synthesize and secrete hNGF in culture and that the synthesis/secretion is regulated in a growth phase-dependent manner.  相似文献   

17.
Human, blood-derived mononuclear cells (MC), stimulated with Concanavalin A (Con A), synthesized a chondroitin sulfate (CS) proteoglycan (PG), which was elaborated largely by T-cells. Following Con A stimulation, the majority of MC adhered to the culture dish by day 2; but as incubation progressed to day 10 the proportion of non-adherent (NAd) MC increased in a fashion which approximately paralleled the accumulation of PG in the medium. Cell kinetic studies suggest that, following Con A stimulation, there was an inverse relationship between the amount of newly synthesized cellular PG and adherence, which appears to be related to a reciprocal effect on PG synthesis of the declining adherent (Ad) cell density with time of culture. In the stimulated cultures, NAd cells contained much more newly synthesized CS/cell than Ad cells up to day 6 of incubation. Cell type analysis, using monoclonal antibodies against specific cell surface markers, suggested that the higher PG synthesis in the NAd population may, at least in part, be due to a greater proportion of T-helper cells.  相似文献   

18.
In chronic rheumatoid arthritis, mononuclear cells (MC) accumulate in the subchondral bone and form a prominent part of both destructive lesions and repair reactions. A fraction from human bone matrix extracts (BME) stimulated glycosaminoglycan (gag) and glycoprotein synthesis by fibroblastic cells but its effects on MC metabolism had not been studied. A method was established for the study of incorporation of radioactive precursors into total protein, IgG and gag synthesized and secreted by peripheral blood MC cultured in microwells in the presence or absence of Concanavalin A (ConA). Relatively low concentrations of BME suppressed spontaneous synthesis of radioactive IgG (protein A bound) and TCA precipitable protein but had little effect on gag synthesis. In general, stimulation of the cultures with ConA overcame the inhibitory effects on protein synthesis by the BME. A large stimulation of gag synthesis induced by ConA was not affected by BME. The interactions between the BME and the stimulatory effect of ConA on DNA synthesis were studied in detail and were found to be complex, not immunologically specific and appeared to be due to binding of lectin by the carbohydrate moieties of the glycoproteins in the BME. On the basis of a model of the lectin-BME interaction, the hypothesis is postulated that the carbohydrate moieties of subchondral bone glycoproteins may have the capacity to act as a solid state "trap" for certain circulating antigens which may then also interact with surface glycoproteins of the MC accumulating in the subchondral bone. The physiological role of gag synthesis by MC is not known.  相似文献   

19.
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1β, −6, and −10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.This work was supported in part by NIH grants 2-P50-AR39239 and 1-P01-AR48152.  相似文献   

20.
The effect of glucocorticoids on sulfated proteoglycan synthesis by rabbit costal chondrocyte cultures exposed to serum-free conditions has been examined. Low density cultures of rabbit costal chondrocytes were maintained on dishes coated with extracellular matrix produced by bovine corneal endothelial cells and exposed to a 9:1 mixture (v/v) of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with transferrin, high density lipoproteins, fibroblast growth factor, and insulin (Medium A). Chondrocytes maintained in the presence of Medium A supplemented with 10(-7) M hydrocortisone reorganized, at confluence, into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix in which abundant thin collagen fibrils characteristic of type II collagen were observed. The cell ultrastructure and fibrils of the pericellular matrix were similar to those seen in vivo. In contrast, cells maintained in the presence of Medium A alone, once they reached confluence, formed a fibroblastic multilayer and produced thick collagen bundles. The level of 35SO4(2-) incorporated into large cartilage-specific proteoglycans in glucocorticoid-supplemented cultures was 33-fold higher than that of glucocorticoid-free cultures. The level of 35SO4(2-) incorporated into small ubiquitous proteoglycans was only 4-fold higher than that of glucocorticoid-free cultures. On the other hand, the level of [3H]glucosamine incorporated into hyaluronate in glucocorticoid-supplemented cultures was 4.5-fold lower than that of glucocorticoid-free cultures. Within 24 h of their addition to confluent cultures, hydrocortisone or dexamethasone markedly stimulated proteoglycan synthesis. This effect was not mimicked by androgens, estrogens, progesterone, or an inactive form of glucocorticoids such as deoxycorticosterone. This suggests that glucocorticoids have a direct and specific stimulatory effect on cartilage-specific proteoglycan synthesis and are essential for the maintenance of this synthesis in low density chondrocyte cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号