首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

2.
We have utilized gene transfer experiments to investigate the role of a human monocyte receptor for IgG (Fc gamma RII) in mouse IgG1 anti-CD3 (Leu 4)-induced lymphoproliferation in vitro. Mouse Ltk- cells expressing human Fc gamma RII or a mutant of Fc gamma RII lacking the entire cytoplasmic domain of the receptor mediate anti-CD3-induced lymphoproliferation in cultures of adherent cell-depleted human PBMC. Expression of an Fc gamma RII mutant lacking transmembrane and cytoplasmic domains (soluble Fc gamma RII) in COS7 cells yielded a secreted receptor which retained affinity for IgG, even in the absence of the mutant receptor's N-linked oligosaccharides. Soluble Fc gamma RII inhibits rosette formation by human IgG-sensitized RBC and the Fc gamma RII-bearing cell line K562, but does not sitmulate anti-CD3-induced lymphoproliferation under the conditions tested.  相似文献   

3.
Human monocytes express two types of IgG FcR, Fc gamma RI and Fc gamma RII. These can be assayed by using indicator E sensitized by human IgG (EA-human IgG) or mouse IgG1, (EA-mouse IgG1), respectively. On mouse macrophages, Fc gamma RI is sensitive to trypsin, whereas Fc gamma RII is trypsin resistant. We studied the effects of the proteolytic enzymes pronase and trypsin on human monocyte Fc gamma R. Neither enzyme caused a decrease in rosetting mediated by monocyte Fc gamma RI. Human Fc gamma RII is polymorphic, and monocytes interact either strongly or weakly with mouse IgG1. The interaction of low responder monocytes with mouse IgG1 was dramatically increased (to the level exhibited by high responder monocytes) by protease treatment. The effects of proteases on Fc gamma RII were investigated in more detail by using monocytes from which Fc gamma RI was selectively modulated by using immobilized immune complexes. Proteolysis of such modulated monocytes induced an increased interaction with EA-human IgG. Fc gamma RII appears to mediate this interaction. This conclusion is supported by the observation that after proteolysis, the Fc gamma RII-mediated binding of EA-mouse IgG1 becomes susceptible to inhibition by (monomeric) human IgG. To quantify the effect of proteolytic enzymes on Fc gamma RII, we performed binding studies with cell line K562, that expresses only Fc gamma RII. A significant increase in Ka of Fc gamma RII for dimeric human IgG complexes was observed when K562 cells were treated with protease. To elucidate the mechanism of this enhancement of Ka by proteolysis, we performed immunoprecipitation studies. Neither m.w., nor IEF pattern of Fc gamma RII were influenced by proteolysis. Moreover, the expression of Fc gamma RII was not affected by proteolysis as evidenced by immunofluorescence studies and Scatchard analysis, and neither were Fc gamma RI or Fc gamma RIII induced. We conclude that proteolysis increases the affinity of Fc gamma RII for human IgG, and speculate that such a proteolysis-induced change may also occur in vivo, e.g., at inflammatory sites.  相似文献   

4.
Cellular receptors for IgG (Fc gamma R) mediate important protective functions. By using site-specific mutants of a chimeric antibody (mouse V H domain and L chain; human IgG3 C H domains), we have demonstrated that human Fc gamma RI interacts with a site in the lower hinge of human IgG (residues 234 to 237) and that this interaction dictates Fc gamma RI-mediated superoxide generation. Mutations at position 235 resulted in the most profound reductions in Fc gamma RI recognition. We have also mapped an interaction site for Fc gamma RII to the same region; however, mutations at position 234 and 237 resulted in the greatest reductions in Fc gamma RII recognition. The two receptors appear to recognize overlapping but nonidentical sites on the lower hinge of IgG. Deviations from the optimal motif 234-Leu-Leu-Gly-Gly-237 may then explain the human IgG subclass specificity profile for human Fc gamma RI and Fc gamma RII.  相似文献   

5.
We have shown previously that certain proteases can modulate the affinity of human Fc gamma RII for IgG. To study whether proteolytic events not only increase FcR affinity, but are essential for Fc gamma R functioning, we evaluated the effect of different protease inhibitors on binding mediated by two classes of human monocyte IgG FcR. These R, Fc gamma RI and Fc gamma RII, can be analyzed selectively in rosetting assays by employing E sensitized by either human IgG or mouse IgG1. Rosetting by both classes of R was inhibited profoundly by incubation of monocytes with different types of serine protease inhibitors such as diisopropylfluorophosphate, PMSF, or N alpha-tosyl-L-lysyl-chloromethylketone. The type II Fc gamma R was much more sensitive to inhibition than Fc gamma RI. We, therefore, studied these effects in more detail by using cell line K562, which expresses only Fc gamma RII. PMSF, diisopropylfluorophosphate, and N alpha-tosyl-L-lysyl-chloromethylketone were, again, inhibiting Fc gamma RII-mediated binding dose-dependently, whereas several inhibitors of metal, aspartic, or thiol proteases proved ineffective. Furthermore, Fc gamma RII-mediated rosetting on both cell types was profoundly inhibited by the addition of different small synthetic substrates of serine esterases. In an attempt to discriminate whether the proteolytic event is an intra- or extracellular process, macromolecular antiproteases such as soybean or ovomucoid trypsin inhibitor or alpha 1-antiprotease were tested. Fc gamma RII-mediated binding by K562 cells was not susceptible to macromolecular antiproteases, in contrast to monocytes. In the presence of drugs which interfere both with receptor recycling and intracellular traffic between endosomal compartments (e.g., primaquine or monensin), the effects of inhibitors were largely abrogated. This showed that endocytosis of inhibitors might be essential, indicating the proteolytic event to be intracellular. Our findings suggest that human monocyte Fc gamma RII-mediated functioning is dependent upon the action of one or more serine proteases.  相似文献   

6.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

7.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

8.
Antigen-specific and idiotype-specific mouse suppressor T cell hybridomas were analyzed for the presence and specificity of Fc gamma receptors (Fc gamma R) by EA rosetting and by flow microfluorometry with the use of monoclonal antibodies. We found that four hybridomas expressed Fc gamma R specific for IgG1 and IgG2b, one of which became Fc gamma R- during prolonged culture. Four other hybridomas and the fusion parent, BW5147, consistently lacked Fc gamma R. The 125I-labeled Fc gamma R were isolated from surface radioiodinated hybridoma cells solubilized with 1% Nonidet P-40, were purified by using single or repetitive chromatography on mouse IgG-Sepharose columns, and were analyzed by SDS-PAGE. An 125I-labeled 56,000 to 61,000 Mr macromolecule was isolated from each of the Fc gamma R+ hybridomas, but from none of the Fc gamma R- hybridomas nor from BW5147 cells. This macromolecule rebound to insolubilized mouse IgG1, IgG2b, and human Fc fragments, but not to insolubilized mouse IgG2a, IgG3, or IgA or human F(ab')2 fragments, consistent with the specificity observed for Fc gamma R on intact hybridoma cells. The mouse suppressor T cell Fc gamma R differs in size and specificity from mouse B cell Fc gamma R. A 70,000 Mr protein expressed on all hybridomas and on BW5147 cells was radiolabeled and, despite preclearing with ovalbumin-Sepharose, bound to the mouse IgG-Sepharose columns, presumably due to mouse antibodies to gp-70. This macromolecule was completely and specifically removed by using goat antiserum to gp-70.  相似文献   

9.
Chimeric Fc gamma R have been generated between the mouse high affinity receptor for IgG (Fc gamma RI) and the low affinity receptor for IgG (Fc gamma RII) by exchanging the first two domains of the three-domain extracellular structure of Fc gamma RI with the homologous two-domain extracellular structure of Fc gamma RII. Studies of the affinity and specificity of binding of mouse Ig classes to these receptors defined functional regions of Fc gamma RI and showed some surprising results. After removal of the third extracellular domain of Fc gamma RI, the remaining two domains (domains 1 and 2) retained the capacity to bind Ig in the form of immune complexes, however, they bound monomeric IgG2a with a reduced affinity. Surprisingly, these two domains in the absence of the third domain bound not only IgG2a but also IgG1 and IgG2b, i.e., the third domain of Fc gamma RI suppresses the intrinsic capacity of the first two domains to act as a low affinity Fc gamma RII-like molecule. Linking the third extracellular domain of Fc gamma RI to the two extracellular domains of Fc gamma RII resulted in a receptor that retained the specificity and affinity of Fc gamma RII. Thus, the removal of domain 3 from Fc gamma RI resulted in the conversion of Fc gamma RI to an "Fc gamma RII-like" receptor. These findings indicate that domains 1 and 2 of Fc gamma RI form an Ig-binding motif, and although domain 3 is not essential for Fc binding by Fc gamma RI, it plays a crucial role in determining the specific high affinity interaction of Fc gamma RI with IgG2a.  相似文献   

10.
We have constructed a set of chimeric Ig by exchanging corresponding H chain C domains between human (hu) IgG1 and murine (m) IgE. We used this set of Ig to dissect the interaction of individual Ig domains with human Fc gamma receptors. Only one of the chimeras, epsilon/C gamma 2,3 (an mIgE with C epsilon 3 and C epsilon 4 replaced by C gamma 2 and C gamma 3 from huIgG1), binds tightly to the human Fc gamma RI on U937 cells. We found that epsilon/C gamma 2,3 has only twofold lower affinity for Fc gamma RI as compared to huIgG1. The gamma/C epsilon 4 (huIgG1 with C epsilon 4 replacing C gamma 3) binds weakly to Fc gamma RI. The other chimeric Ig, epsilon/C gamma 3, epsilon/C gamma 2, and gamma/C epsilon 3, as well as mIgE do not bind detectably to Fc gamma RI. From these data we conclude that the C gamma 2 domain is crucial for binding and contains the majority of the binding site for Fc gamma RI on IgG1. The C gamma 3 domain makes a smaller contribution to the binding, and the C gamma 1 domain and the hinge region have very little effect on the Fc gamma RI-IgG1 interaction. The chimeric epsilon/C gamma 2,3 and huIgG1 both mediate the formation of rosettes between K562 cells and antigen-sensitized E with similar concentration dependences. These results suggest similar ability to bind to Fc gamma RII. The other chimeric Ig do not cause rosettes in this assay system. Hence, both C gamma 2 and C gamma 3 seem to be required for binding to Fc gamma RII, but the C gamma 1-hinge region has no detectable effect.  相似文献   

11.
Affinity-purified rheumatoid factors (RF) from 20 patients with rheumatoid arthritis were tested for their reactivity with the mAb II-481 against glycoprotein E (gE), the Fc gamma-binding protein of HSV-1, as well as with a panel of mAb against human Fc gamma R. All RF bound to mAb II-481 in preference to mAb IV.3 (anti-human Fc gamma RII) or MOPC 141 (control mAb) which belong to the same IgG2b subclass. Five RF showed strong reactivity with II-481. No significant reactivity was observed between RF and mAb against human Fc gamma R. Non-RF human IgM did not react with any of the mAb. Clear-cut binding to II-481 was also seen with monoclonal IgM-RF derived from MRL/1 mice (mRF-2). The reaction between RF and II-481 was completely inhibited by human IgG. It was also inhibited by BHK cell extract infected with HSV-1, and with purified gE. II-481 inhibited the binding of human IgG Fc to the infected cell extract, confirming that II-481 recognizes the Fc-binding site on gE. II-481 did not react directly with human IgG or Fc of IgG. mAb to human IgG2 showed stronger binding to II-481 than to MOPC 141, suggesting II-481 has conformational similarity to human IgG H chain. These results suggest that at least some RF bear the "internal image" of HSV-1 Fc gamma-binding protein and support the hypothesis that some RF may be generated as anti-idiotype antibodies against antiviral antibodies.  相似文献   

12.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

13.
At physiologic and therapeutic concentrations, glucocorticoids decrease the number of Fc receptors for IgG (Fc gamma R) on human monocyte-like cell lines. In comparison, gamma-interferon (IFN-gamma) increases Fc gamma R expression on both human monocytes and monocyte-like cell lines. In this study, we examined the combined effects of glucocorticoids and IFN-gamma on human monocyte expression of the high affinity (72 kDa) Fc gamma R. Mononuclear cells prepared from heparinized venous blood of normal donors were treated for up to 90 hr with or without recombinant IFN-gamma and/or steroids. Monocyte Fc gamma R were measured by Scatchard analysis of the binding of human monomeric 125I-IgG1; indirect immunofluorescence plus flow cytometry, utilizing a monoclonal antibody (MoAb 32) which is specific for the high affinity Fc gamma R; and direct immunofluorescence using fluorescein isothiocyanate-labeled human monomeric IgG1 and flow cytometry quantitated using U-937 cells as a standard. Cultured monocytes incubated in the presence of both glucocorticoids and IFN-gamma for 18 hr had significantly higher (p less than 0.01) Fc gamma R levels than monocytes treated with IFN-gamma alone. The effect of combined treatment reached a plateau by 42 hr of incubation without increasing expression of other surface markers tested. Treatment with glucocorticoids alone did not consistently decrease monocyte Fc gamma R levels after either 18 or 42 hr of culture. Only glucocorticoids augmented the IFN-gamma increase in Fc gamma R; other steroids tested had no effect on IFN-gamma action. Furthermore, the effect was observed after treatment with only one type of interferon, IFN-gamma. These results describe a glucocorticoid immunoregulatory effect that may explain why combined IFN-gamma plus glucocorticoid treatment enhances mononuclear phagocyte Fc-mediated functions.  相似文献   

14.
15.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

16.
Human FcR for IgG can be divided into three classes (Fc gamma RI, II, and III) based on their structure and reactivity with mAb. Fc gamma RII can be further subdivided into two categories based on functional and biochemical assays. These two Fc gamma RII subtypes were initially recognized by the failure of T cells from 40% of individuals to proliferate in response to mAb Leu 4 (mouse IgG1, anti-CD3), a response that requires the binding of the Fc region of the Leu 4 mAb to Fc gamma RII on monocyte accessory cells. Inas-much as mouse IgG1, does not bind efficiently to the nonresponder form of Fc gamma RII, mAb Leu 4 is unable to induce proliferation in these individuals. IEF data on Fc gamma RII from Leu 4 responder and nonresponder individuals suggested that the structural gene for Fc gamma RII consisted of two allelic forms R (responder) and N (nonresponder) producing the phenotypes RR, RN, and NN. Thus, exclusive expression of the nonresponder allele in monocytes of "nonresponder" individuals, appeared to be responsible for the lack of proliferation observed. In cooperation with the IVth International Conference on Human Leukocyte Differentiation Antigens, we analyzed CDw32 mAb to determine if they could distinguish the responder and nonresponder forms of Fc gamma RII. We report that mAb 41H16 binds preferentially to the responder allotypic form of Fc gamma RII expressed on human monocytes. When quantitative flow cytometry is used to measure the binding of both mAb 41H16 (responder Fc gamma RII) and mAb IV.3 (all myeloid cell Fc gamma RII), we are able to subdivide the responder population into homozygous and heterozygous responders. In addition, mAb 41H16 blocks the binding of mAb IV.3 to monocytes and inhibits proliferation when added to cells before addition of mAb Leu 4. We also show that polymorphonuclear leukocytes and platelets have the same allotypic differences in the binding of 41H16 as do monocytes. However, a subset of lymphocytes (previously shown to be B cells) expresses the 41H16 epitope with no evidence for donor to donor variability.  相似文献   

17.
The role of the low avidity 40,000 dalton receptor for IgG (Fc gamma R) present on K562 and U937 cells in sensitivity to natural killing (NK) was studied by using a murine monoclonal antibody (mAb) specific for the 40,000 dalton Fc gamma R (alpha Fc gamma R mAb). Pretreatment of K562 target cells with intact alpha Fc gamma R mAb or its Fab fragment or anti-transferrin receptor (alpha TFR) mAb partially blocked in a dose-dependent manner, NK activity to K562 cells. However, combined pretreatment with alpha Fc gamma R and alpha TFR mAb completely blocked NK activity against K562 targets. As compared with K562 cells, lower levels of NK were elicited against Molt-4, U937, HL-60, and Daudi targets. Although NK activity to Molt-4 targets was not affected by alpha Fc gamma R mAb, it was fully prevented by pretreatment with alpha TFR mAb. In contrast, NK to U937 cells was not influenced by alpha TFR mAb, but it was strongly inhibited by alpha Fc gamma R mAb. The resistance of 3H-TdR-prelabeled adherent HEp-2 cells to natural cell-mediated cytotoxicity was not affected by either mAb. Lectin-dependent cell-mediated cytotoxicity (LDCC) against HEp-2 cells due to the presence of concanavalin A, and was completely abrogated by pretreatment of the targets with alpha TFR mAb, but was unaffected by alpha Fc gamma R mAb. By use of the flow cytometer, a significant correlation was detected between the relative expression of 40,000 dalton Fc gamma R and the susceptibility to NK, whereas the expression of TFR was discordant from NK sensitivity. As determined in the single cell cytotoxicity assay alpha Fc gamma R mAb reduced the frequency of target binding effector cells without affecting the number of dead bound targets. This pattern of inhibition was found against both K562 and U937 targets. Alternatively, alpha TFR mAb inhibited both binding and killing of K562 and Molt-4 targets. Because pretreatment of HEp-2 cells with alpha TFR mAb did not influence conjugate formation, the blocking of LDCC to HEp-2 cells by alpha TFR mAb can be related to post-binding events. These data show that although both the 40,000 dalton Fc gamma R and the TFR can be target structures for NK cell recognition, the TFR may also play an important role in the post-binding events.  相似文献   

18.
Characterization of the Fc gamma receptor on human platelets   总被引:4,自引:0,他引:4  
IgG-containing immune complexes may play a role in the immune destruction of human platelets by interacting with an Fc gamma receptor on the platelet surface. We studied the platelet Fc gamma receptor and characterized its interaction with IgG ligand and anti-Fc gamma receptor monoclonal antibodies. Oligomers of IgG, but not monomeric IgG, bound to platelets and the number of binding sites was significantly increased at low ionic strength. Ligand-binding studies indicated that normal human platelets express a single Fc gamma receptor (Fc gamma RII) with 8559 +/- 852 sites per cell, Kd = 12.5 +/- 1.7 X 10(-8) M using trimeric IgG. Results of studies with bivalent and Fab monoclonal anti-Fc gamma RII were consistent with each Fc gamma receptor expressing two epitopes recognized by the antibody. The number of Fc gamma binding sites and affinity of binding were unchanged by the presence of 2.0 mM Mg2+ or 10 micrograms/ml cytochalasin B. Platelet stimulation with thrombin or ADP in the presence of fibrinogen also did not alter the number of Fc gamma binding sites or the affinity of binding. However, platelets preincubated with 5 microM dexamethasone expressed a decreased number of Fc gamma binding sites as well as decreased IgG-dependent platelet aggregation. Platelets from patients with Glanzmann's thrombasthenia and from patients with the Bernard Soulier syndrome expressed a normal number and affinity of Fc gamma binding sites. The data suggest that platelet Fc gamma RII binding of trimeric IgG occurs independent of actin filament interaction, Mg2+, ADP, or thrombin and does not require GPIIb/IIIa or GPIIb/IIIa-fibrinogen interaction. Furthermore, this receptor appears to be normally expressed on GPIb-deficient platelets and susceptible to modulation by glucocorticoids. Finally, the Fc gamma-binding protein was isolated from whole platelets as a 220-kDa protein which upon reduction dissociates into 50,000 Mr subunits.  相似文献   

19.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

20.
Immune complexes were prepared by incubation of human IgG paraproteins with F(ab')2 fragments of the mAb K35 against the kappa-L chain of human IgG. The composition of these complexes was analyzed by centrifugation over sucrose gradients, by gel filtration, by RIA with either IgG Sepharose or K35 Sepharose and by double-labeling studies. The results indicated that the complexes consist of saturated tetramers composed of two IgG molecules cross-linked by two F(ab')2 fragments of the mAb. These complexes were used to study the binding of the different IgG subclasses to human neutrophils at 4 degrees C. Human neutrophils bound IgG3 complexes approximately three times faster than IgG1 complexes. Binding of IgG2 or IgG4 dimers to the neutrophils was undetectable. The same number of IgG1 complexes and IgG3 complexes bound to the neutrophils, but considerable inter-donor variation was found (mean number of Fc gamma R per neutrophil: 190,000, range 120,000 to 400,000). The Ka for the binding of IgG1 complexes to neutrophils (median 11 x 10(7) M-1) was lower than the Ka for the binding of IgG3 complexes (median 47 x 10(7) M-1). Competition studies between labeled IgG1 complexes or IgG3 complexes and unlabeled complexes showed that the Fc gamma R of human neutrophils do not display an IgG subclass specificity. Incubation of neutrophils with a mAb against the FcRIII completely blocked the binding of IgG1 complexes and IgG3 complexes. Incubation with a mAb against the FcRII reduced the affinity of the complexes for the neutrophils but had no effect on the maximum number of complexes bound. This indicates that one complex may bind simultaneously to one FcRIII and to one FcRII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号