首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of 146 spontaneously active neurons of the reticular nucleus (R) and of 98 neurons of the ventral anterior (VA) nucleus of the thalamus to electrical stimulation of the skin of the footpads, to flashes, and to clicks were studied in experiments on cats immobilized with D-tubocurarine or myorelaxin. Stimulation of the contralateral forelimb was the most effective: 24.9% of R neurons and 31.3% of VA neurons responded to this stimulation. A response to clicks was observed in only 4.4% of R neurons and 2.4% of VA neurons. Nearly all responding neurons did so by phasic (one spike or a group of spikes) or tonic excitation. Depression of spontaneous activity was observed only in response to electrical stimulation of the skin. Depending on the site of stimulation, it was observed in 2.6–4.3% of R neurons and 1.7–2.1% of VA neurons tested. The latent period of the phasic responses of most neurons was 6–64 msec to electrical stimulation of the contralateral forelimb, 11–43 msec in response to stimulation of the hindlimb on the same side, 10–60 msec to photic and 8–60 msec to acoustic stimulation. Depending on the character of stimulation, 75.1–95.6% of R neurons and 68.7–97.6% of VA cells did not respond at all to the stimuli used. Of the total number of cells tested against the whole range of stimuli, 25% of R neurons and 47% of VA neurons responded to stimulation of different limbs, whereas 16% of R neurons and 22% of VA cells responded to stimuli of different sensory modalities. The functional role of the convergence revealed in these experiments is to inhibit (or, less frequently, to facilitate) the response of a neuron to a testing stimulus during the 40–70 msec after conditioning stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 563–571, November–December, 1975.  相似文献   

2.
Responses of 92 neurons of the reticular (R) and 105 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of the ventrobasal complex (VB) and the lateral (GL) and medial (GM) geniculate bodies were investigated in cats immobilized with D-tobocurarine. Altogether 72.2% of R neurons and 76.2% of VA neurons responded to stimulation of VB whereas only 15.0% of R neurons and 27.1% of VA neurons responded to stimulation of GM and 10.2% of R neurons and 19.6% of VA neurons responded to stimulation of GL. The response of the R and VA neurons to stimulation of the relay nuclei as a rule was expressed as excitation. A primary inhibitory response was observed for only two R and three VA neurons. Two types of excitable neurons were distinguished: The first respond to afferent stimulation by a discharge consisting of 5–15 spikes with a frequency of 250–300/sec; the second respond by single action potentials. Neurons of the first type closely resemble inhibitory interneurons in the character of the response. Antidromic responses were recorded from 2.2% of R neurons and 7.8% of VA neurons during stimulation of the relay nuclei. Among the R and VA neurons there are some which respond to stimulation not only of one, but of two or even three relay nuclei. If stimulation of one relay nucleus is accompanied by a response of a R or VA neuron, preceding stimulation of another nucleus leads to inhibition of the response to the testing stimulus if the interval between conditioning and testing stimuli is less than 30–50 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 597–605, November–December, 1976.  相似文献   

3.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

4.
Activity in 62 caudate nucleus neurons produced during presentation of visual stimuli was recorded during experiments on awake cats. Response of a sensory pattern, associated with a photic stimulus falling within a certain section of the visual field was observed in 52% of the neurons tested as against only 11% manifesting motor response related to eye movement guided towards a target. About a quarter of the cells responded to biologically significant stimuli, producing a nonspecific response, i.e., not specifically related to the nature of the visual stimuli presented. Several different response patterns could be recorded from a single unit. A hypothesis that more than one parallel pathway for afferent visual inferences on the caudate nucleus may exist is presented on the basis of findings from this research.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, May–June, pp. 372–378, 1989.  相似文献   

5.
In acute experiments on cats anesthetized with thiopental (30–40 mg/kg, intraperitoneally) and immobilized with D-tubocurarine (1 mg/kg) responses of 145 neurons of the reticular and 158 neurons of the ventral anterior nuclei of the thalamus to electrical stimulation of the centrum medianum were investigated. An antidromic action potential appeared after a latent period of 0.3–2.0 msec in 4.1% of cells of the reticular nucleus and 4.4% of neurons of the ventral anterior nucleus tested in response to stimulation. The conduction velocity of antidromic excitation along axons of these neurons was 1.7–7.6 m/sec. Neurons responding with an antidromic action potential to stimulation both of the centrum medianum and of other formations were discovered, electrophysiological evidence of the ramification of such an axon. Altogether 53.8% of neurons of the reticular nucleus and 46.9% of neurons of the ventral anterior nucleus responded to stimulation of the centrum medianum by orthodromic excitation. Among neurons excited orthodromically two groups of cells were distinguished: The first group generated a discharge consisting of 6–12 action potentials with a frequency of 130–640 Hz (the duration of discharge did not exceed 60 msec), whereas the second responded with a single action potential. Inhibitory responses were observed in only 0.7% of neurons of the reticular nucleus and 4.4% of the ventral anterior nucleus tested. Afferent influences from the relay nuclei of the thalamus, lateral posterior nucleus, and motor cortex were shown to converge on neurons responding to stimulation of the centrum medianum.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 36–45, January–February, 1980.  相似文献   

6.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

7.
A microelectrode investigation was made of responses of 72 physiologically identified neurons of the ventral posterior (VP) and 116 neurons of the ventral lateral (VL) thalamic nuclei to electrical stimulation of the reticular (R) thalamic nucleus. Mainly those neurons of VP and VL (73.7 and 86.2% respectively) which responded to stimulation of the first motor area and nucleus interpositus of the cerebellum responded to stimulation of R; 19.8% of VL neurons tested responded to stimulation of R by an antidromic action potential with latent period of 0.5–2.0 msec and 46.6% of neurons responded by orthodromic excitation; 23% of orthodromic responses had a latent period of 0.9–3.5 msec and 77% a latent period of 4.0–21.0 msec; 19.8% of VL neurons tested were inhibited. Among IPSPs recorded only one was monosynaptic (1.0 msec) and the rest polysynaptic. It is postulated that both R neurons are excitatory and that the inhibition which develops in VL neurons during stimulation of R are connected mainly with activation of inhibitory interneurons outside the reticular nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 477–485, September–October, 1977.  相似文献   

8.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

9.
The response pattern of reticulo-spinal (RS) neurons in two reticulo-spinal structures (n. reticularus pontis caudalis and n. reticularis gigantocellularis) to both electrical (somatic) nerve stimulation and natural mechanical innocuous (tapping with varying force) and noxious (pinch and prick) stimulation were investigated in chloralose-anesthetized cats. Bulbar and pontine neurons were found to vary considerably in their sensory characteristics: of the former 43% were activated only by high-threshold electrical nerve stimulation and noxious stimuli, while the remainder responded to innocuous stimuli as well. In the case of pontine neurons 81% produced a response to stimulation of low-threshold nerve fibers, and to innocuous as well as noxious stimuli. A relationship was found between the sensory characteristics of reticulo-spinal neurons and their axon conductance velocities. Various aspects and the likely functional significance of specialization in brainstem neurons of the pontine and bulbar reticular formation come under discussion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 461–469, July–August, 1986.  相似文献   

10.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

11.
Neuronal response in the caudate nucleus to presentation of a wide variety of visual and other sensory stimuli was investigated in waking cats. Pronounced discrepancies in background activity of unknown origin as well as differing neuronal activity level were noted in adjacent sections of the nucleus. Of the neurons from which readings of response to sensory stimulation could be made, some reacted to presentation of exclusively visual and others to tactile stimuli; a third group responded to a combination of visual and somatic stimulation only. Response could only be produced in cells of all types by a high level of activity in the animal. Visual stimuli attracting the animal's interest proved to be the most effective form of stimulation. Ipsi- and contralateral sides of the animal's body were both represented in the caudate nucleus of each hemisphere. Neuronal response in the caudate nucleus may be compared with that produced by application of similar stimuli in cells belonging to different cortical areas.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 3–10, January–February, 1990.  相似文献   

12.
Responses of 189 neurons of the somatosensory cortex to stimulation of the nonspecific reticular (R) and anteroventral (AV) nuclei of the thalamus were studied in cats anesthetized with thiopental and immobilized with tubocurarine. In the series of experiments with stimulation of R and, for comparison, of the specific ventral posterolateral nucleus (VPL), 132 neurons were recorded, of which 22 (16.7%) did not respond to stimulation of these nuclei, 77 (58.3%) responded only to stimulation of VPL, and 33 (25%) responded to stimulation of both VPL and R. In the series of experiments in which AV was stimulated, 57 neurons were recorded. Eight (14.8%) responded to neither stimulus and 25 (43.1%) responded only to stimulation of VPL; 24 responded to stimulation of AV (42.1%), and of these, 10 also responded to stimulation of VPL. A characteristic feature of unit responses in the somatosensory cortex to stimulation of the nonspecific nuclei was the irregularity of the responses and their longer latent period. Only five cells responded sooner to stimulation of the nonspecific nuclei than to stimulation of VPL. Responses of the nonspecific nuclei to stimulation appeared clearly only if the stimulation was repetitive. Preliminary stimulation of R blocks the response to stimulation of VPL during the subsequent 40–60 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 384–390, July–August, 1972.  相似文献   

13.
Responses of 124 neurons in the anterior division of the middle suprasylvian gyrus to stimulation of the reticular (R) and anteroventral (VA) nuclei and the pulvinar (Pulv.) of the thalamus were studied in acute experiments on unanesthetized cats immobilized with D-tubocurarine. Responses of 70 neurons to stimulation of R and Pulv. were investigated. Altogether 51.5% of the cells of this group responded to stimulation of R while 38.6% of neurons responded to stimulation both of R and of Pulv., indicating convergence of afferents from nonspecific and associative nuclei of the thalamus on these neurons. Responses of 54 cells to stimulation of VA and Pulv. were investigated. The tests showed that 72.2% of neurons responded to stimulation of VA and convergence of afferents from VA and Pulv. was found in 29.6% of neurons. As a rule neurons were excited in response to stimulation of R and VA. Inhibition was observed in only one neuron in response to stimulation of R and in six neurons in response to stimulation of VA. The latent period of responses to stimulation of R varied between 2.2 and 37.0 msec, of VA from 6.0 to 35.5 msec, and of Pulv. from 2.1 to 35.0 msec. The length of the latent periods to stimulation of nonspecific and associative nuclei were compared for groups of neurons for which convergence of afferent influences from R and Pulv. or from VA and Pulv. was found. The question of connections of R and VA with the parietal association cortex is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 339–347, July–August, 1973.  相似文献   

14.
Spike response was investigated in 104 neurons of the nucleus reticularis thalami (R) and adjoining thalamic nuclei to acoustic, tactile, and visual stimuli during chronic experiments on cats. Of the test neurons, 29% responded to acoustic stimulation and 11% showed no preference in relation to different acoustic stimuli. Minimum latencies of response to sounds measured 12–37 msec in excitatory and 18–27 msec in inhibitory cells. Duration of excitation produced by acoustic stimuli reached 50–250 msec; inhibition lasted 27–190 msec. Most cells belonging to this nucleus were excited by different stimuli; the proportion of inhibitory neurons did not exceed 4–10%.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 451–461, July–August, 1989.  相似文献   

15.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

16.
We investigated the visual-cortex neurons of the conscious rabbit during simultaneous stimulation with a clicking sound and a light flash (complex) and during separate application of these stimuli. We tested the development of the reflex with time and of the sound-light association during prolonged rhythmic application of the sound and light. Fifty visual-cortex neurons were studied; 20% of the cells responded with a specific phased reaction and 16% exhibited a specific response to the complex different from the responses to each of its components. Development of a sound-light association was observed in 18% of the cells and a temporal reflex was induced in 25%. In most cases, the conditioned reaction evoked was similar to some informational element in the neuronal response to the complex.M. V. Lomonosov Moscow State University. Institute of Cybernetics, Academy of Sciences of the GruzSSR. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 391–398, July–August, 1970.  相似文献   

17.
Responses of single reticular units to electrodermal stimulation were studied in unanesthetized, immobilized rats during cold blocking of the cortical representation of the stimulated limbs. Local cooling of the somatosensory cortex caused reversible and opposite changes in responses of 60 of the 86 neurons tested. In 25 cells responses only to stimulation of the limb whose sensory projection was in the cooled zone were modified. In 31 neurons changes in responses to this stimulation predominated and in 22 they were comparable with changes in responses of the same neurons to electrodermal stimulation of the other limb, whose cortical representation was intact. Cold blocking of the cortical response to presentation of one of the stimuli thus modifies the conditions for information processing in the neuron net of the reticular formation selectively for the response to presentation of that same stimulus.I. M. Sechenov Institute of Evolutionary Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 179–186, March–April, 1981.  相似文献   

18.
Unit activity in cortical areas 24 and 32 was studied during conditioned placing reflex formation in cats. Neuronal responses in the limbic cortex of trained animals correlated with acoustic stimulation, the motor response, and also with the presentation of food reinforcement. In untrained animals 16% of neurons responded to acoustic stimulation. After training the number of neurons responding to sound in area 32 increased to 51.3%. Of the total number of neurons, 34.6% responded by initial excitation and 26.7% by inhibition of spike activity. The latent period of these responses was about 50 msec and their duration up to 200 msec. Similar but weaker responses were observed in area 24. Short-latency activation responses to conditioned and differential stimulation were similar in character. It is suggested that after training processes taking place in the limbic cortex may contribute to better perception of both conditioned and differential acoustic stimuli, irrespective of their functional significance.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 201–208, March–April, 1984.  相似文献   

19.
Acute experiments on cats anesthetized with pentobarbital and immobilized with Diplacin or Listhenon showed that electrical stimulation of the vagus, splanchnic, pelvic, and sciatic nerves and also of the mesencephalic reticular formation induces either a prolonged change in the frequency of unit activity or phasic responses of single units of the lateral geniculate body. During stimulation of the visceral nerves tonic changes in unit activity were predominant, whereas phasic responses were found more often during somatic stimulation. Most neurons tested responded to all types of stimulation used and only 15–18% responded only to the specific stimulus: photic stimulation of the receptive field. The results suggest that interaction of visceral, somatic, and sensory-specific excitation takes place on single neurons of the lateral geniculate body.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Ivano-Frankovsk Medical Institute. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 246–252, May–June, 1973.  相似文献   

20.
Traditional defensive and operant food reflexes were used to investigate neuronal responses of the mesencephalic reticular formation. It was found that these neurons may be divided into different groups according to function, depending on how they respond to positive conditioning stimuli. Of the two main groups of neurons with sustained tonic reactions one is activated in response to positive acoustic conditioning stimulation; it no longer reacts to the same stimulus after extinction of the reflex, while the other only becomes involved in response to positive stimulation accompanying the initiation of movement. Neurons belonging to the second group begin to respond directly to acoustic stimulation after extinction of the conditioned reflex. Neurons of the mesencephalic reticular formation can thus exercise additional tonic ascending effects both in the production and inner inhibition of the conditioned reflex. The group of neurons with a phasic reaction, i.e., a double response (a direct response to sound and another produced by movement) displayed a drop in spontaneous activity during the shaping of inhibition of differentiation and of extinction in particular. It was found that the initial changes in the spike response of reticular formation neurons during conditioning and pseudo-conditioning are similar. There are thus grounds for stating that neurons of the mesencephalic reticular formation participate in the shaping, production, and inner inhibition of traditional and operant conditioned reflexes in a differentiated capacity rather than as a population reacting identically.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 161–171, March–April, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号