首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 110-kD protein-calmodulin complex (110K-CM) of the intestinal brush border serves to laterally tether microvillar actin filaments to the plasma membrane. Results from several laboratories have demonstrated that this complex shares many enzymatic and structural properties with myosin. The mechanochemical potential of purified avian 110K-CM was assessed using the Nitella bead motility assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature (Lond.). 303:31-35). Under low Ca2+ conditions, 110K-CM-coated beads bound to actin cables, but no movement was observed. Using EGTA/calcium buffers (approximately 5-10 microM free Ca2+) movement of 110K-CM-coated beads along actin cables (average rate of approximately 8 nm/s) was observed. The movement was in the same direction as that for beads coated with skeletal muscle myosin. The motile preparations of 110K-CM were shown to be free of detectable contamination by conventional brush border myosin. Based on these and other observations demonstrating the myosin-like properties of 110K-CM, we propose that this complex be named "brush border myosin I."  相似文献   

2.
L M Coluccio  A Bretscher 《Biochemistry》1990,29(50):11089-11094
In intestinal microvilli, the 110K-calmodulin complex is the major component of the cross-bridges which connect the core bundle of actin filaments to the membrane. Our previous work showed that the 110-kDa polypeptide can be divided into three functional domains: a 78-kDa fragment that contains the ATPase activity and the ATP-reversible F-actin-binding site, a 12-kDa fragment required for binding calmodulin molecules, and a terminal 20-kDa domain of unknown function [Coluccio, L. M., & Bretscher, A. (1988) J. Cell Biol. 106, 367-374]. By analysis of limited alpha-chymotryptic cleavage products, we now show that the molecular organization is very similar to that described for the S1 fragment of myosin. The catalytic site was identified by photoaffinity labeling with [5,6-3H]UTP, and fragments binding F-actin were identified by cosedimentation assays. Cleavage of the 78-kDa fragment yielded major fragments of 32 and 45 kDa, followed by cleavage of the 45-kDa fragment to a 40-kDa fragment. Of these, only the 32-kDa fragment was labeled by [5,6-3H]UTP. Physical characterization revealed that the 45- and 32-kDa fragments exist as a complex that can bind F-actin, whereas the 40-kDa/32-kDa complex cannot bind actin. We conclude that the catalytic site is located in the 32-kDa fragment and the F-actin-binding site is present in the 45-kDa fragment; the ability to bind actin is lost upon further cleavage of the 45-kDa fragment to 40 kDa. Peptide sequence analysis revealed that the 45-kDa fragment lies within the molecule and suggests that the 32-kDa fragment is the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
110-kD-calmodulin, when immobilized on nitrocellulose-coated coverslips, translocates actin filaments at a maximal rate of 0.07-0.1 micron/s at 37 degrees C. Actin activates MgATPase activity greater than 40-fold, with a Km of 40 microM and Vmax of 0.86 s-1 (323 nmol/min/mg). The rate of motility mediated by 110-kD-calmodulin is dependent on temperature and concentration of ATP, but independent of time, actin filament length, amount of enzyme, or ionic strength. Tropomyosin inhibits actin binding by 110-kD-calmodulin in MgATP and inhibits motility. Micromolar calcium slightly increases the rate of motility and increases the actin-activated MgATP hydrolysis of the intact complex. In 0.1 mM or higher calcium, motility ceases and actin-dependent MgATPase activity remains at a low rate not activated by increasing actin concentration. Correlated with these inhibitions of activity, a subset of calmodulin is dissociated from the complex. To determine if calmodulin loss is the cause of calcium inhibition, we assayed the ability of calmodulin to rescue the calcium-inactivated enzyme. Readdition of calmodulin to the nitrocellulose-bound, calcium-inactivated enzyme completely restores motility. Addition of calmodulin also restores actin activation to MgATPase activity in high calcium, but does not affect the activity of the enzyme in EGTA. These results demonstrate that in vitro 110-kD-calmodulin functions as a calcium-sensitive mechanoenzyme, a vertebrate myosin I. The properties of this enzyme suggest that despite unique structure and regulation, myosins I and II share a molecular mechanism of motility.  相似文献   

4.
The actin bundle within each microvillus of the intestinal brush border is tethered laterally to the membrane by spirally arranged bridges. These bridges are thought to be composed of a protein complex consisting of a 110-kD subunit and multiple molecules of bound calmodulin (CM). Recent studies indicate that this complex, termed 110K-CM, is myosin-like with respect to its actin binding and ATPase properties. In this study, possible structural similarity between the 110-kD subunit and myosin was examined using two sets of mAbs; one was generated against Acanthamoeba myosin II and the other against the 110-kD subunit of avian 110K-CM. The myosin II mAbs had been shown previously to be cross-reactive with skeletal muscle myosin, with the epitope(s) localized to the 50-kD tryptic fragment of the subfragment-1 (S1) domain. The 110K mAbs (CX 1-5) reacted with the 110-kD subunit as well as with the heavy chain of skeletal but not with that of smooth or brush border myosin. All five of these 110K mAbs reacted with the 25-kD, NH2-terminal tryptic fragment of chicken skeletal S1, which contains the ATP-binding site of myosin. Similar tryptic digestion of 110K-CM revealed that these five mAbs all reacted with a 36-kD fragment of 110K (as well as larger 90- and 54-kD fragments) which by photoaffinity labeling was shown to contain the ATP-binding site(s) of the 110K subunit. CM binding to these same tryptic digests of 110K-CM revealed that only the 90-kD fragment retained both ATP- and CM-binding domains. CM binding was observed to several tryptic fragments of 60, 40, 29, and 18 kD, none of which contain the myosin head epitopes. These results suggest structural similarity between the 110K and myosin S1, including those domains involved in ATP- and actin binding, and provide additional evidence that 110K-CM is a myosin. These studies also support the results of Coluccio and Bretscher (1988. J. Cell Biol. 106:367-373) that the calmodulin-binding site(s) and the myosin head region of the 110-kD subunit lie in discrete functional domains of the molecule.  相似文献   

5.
The brush border of intestinal epithelial cells consists of a tightly packed array of microvilli, each of which contains a core of actin filaments. It has been postulated that microvillar movements are mediated by myosin interactions in the terminal web with the basal ends of these actin cores (Mooseker, M.S. 1976. J. Cell. Biol. 71:417-433). We report here that two predictions of this model are correct: (a) The brush border contains myosin, and (b) myosin is located in the terminal web. Myosin is isolated in 70 percent purity by solubilization of Triton-treated brush borders in 0.6 M KI, and separation of the components by gel filtration. Most of the remaining contaminants can be removed by precipitation of the myosin at low ionic strength. This yield is approximately 1 mg of myosin/30 mg of solubilized brush border protein. The molecule consists of three subunits with molecular weights of 200,000, 19,000, and 17,000 daltons in a 1:1:1 M ratio. At low ionic strength, the myosin forms small, bipolar filaments with dimensions of 300 X 11nm, that are similar to filaments seen previously in the terminal web of isolated brush borders. Like that of other vertebrate, nonmuscle myosins, the ATPase activity of isolated brush border myosin in 0.6 M KCI is highest with EDTA (1 μmol P(i)/mg-min; 37 degrees C), intermediate with Ca++ (0.4 μmol P(i)/mg-min), and low with Mg++ (0.01 μmol P(i)/mg-min). Actin does not stimulate the Mg-ATPase activity of the isolated enzyme. Antibodies against the rod fragment of human platelet myosin cross-react by immunodiffusion with brush border myosin. Staining of isolated mouse or chicken brush borders with rhodamine-antimyosin demonstrates that myosin is localized exclusively in the terminal web.  相似文献   

6.
We investigate, in this study, the potential involvement of an acto-myosin-driven mechanism in endocytosis of polarized cells. We observed that depolymerization of actin filaments using latrunculin A decreases the rate of transferrin recycling to the basolateral plasma membrane of Caco-2 cells, and increases its delivery to the apical plasma membrane. To analyze whether a myosin was involved in endocytosis, we produced, in this polarized cell line, truncated, non-functional, brush border, myosin I proteins (BBMI) that we have previously demonstrated to have a dominant negative effect on endocytosis of unpolarized cells. These non-functional proteins affect the rate of transferrin recycling and the rate of transepithelial transport of dipeptidyl-peptidase IV from the basolateral plasma membrane to the apical plasma membrane. They modify the distribution of internalized endocytic tracers in apical multivesicular endosomes that are accessible to fluid phase tracers internalized from apical and basolateral plasma membrane domains. Altogether, these observations suggest that an acto-myosin-driven mechanism is involved in the trafficking of basolaterally internalized molecules to the apical plasma membrane.  相似文献   

7.
  • 1.1. Na/H exchange is the major pathway for Na uptake in brush border membrane vesicles from chicken small intestine. Hanes-Woolf analysis demonstrated that Na and H competed at the same extravesicular site. The KNa for Na+ at extravesicular pH 6.6 is 35 mM and at pH 7.4, 12 mM.
  • 2.2. Similar to mammalian intestinal cells, the Na/H exchanger does not appear to have an internal proton modifier site. Varying intravesicular pH from 6.1 to 7.8 stimulates uptake, but a sigmoidal relationship is not observed.
  • 3.3. The ability of several amiloride analogs to inhibit the exchanger was tested and the inhibitory profile was similar, but not identical to Na/H exchangers in mammalian tissues. The potency series (from most to least potent) is hexamethylamiloride ≈ ethylisopropylamiloride > methylisobutylamiloride > dimethyl-amiloride > amiloride.
  相似文献   

8.
The kidney epithelial cell line, LLC-PK1-CL4 (CL4), forms a well ordered brush border (BB) on its apical surface. CL4 cells were used to examine the dynamics of MYO1A (M1A; formerly BB myosin I) within the BB using GFP-tagged MIA (GFP-M1A), MIA motor domain (GFP-MDIQ), and tail domain (GFP-Tail). GFP-beta-actin (GFP-Actin) was used to assess actin dynamics within the BB. GFP-M1A, GFP-Tail, but not GFP-MDIQ localized to the BB, indicating that the tail is sufficient for apical targeting of M1A. GFP-Actin targeted to all the actin domains of the cell including the BB. Fluorescence recovery after photobleaching analysis revealed that GFP-M1A and GFP-Tail turnover in the BB is rapid, approximately 80% complete in <1 min. As expected for an actin-based motor, ATP depletion resulted in significant inhibition of GFP-M1A turnover yet had little effect on GFP-Tail exchange. Rapid turnover of GFP-M1A and GFP-Tail was not due to actin turnover as GFP-Actin turnover in the BB was much slower. These results indicate that the BB population of M1A turns over rapidly, while its head and tail domains interact transiently with the core actin and plasma membrane, respectively. This rapidly exchanging pool of M1A envelops an actin core bundle that, by comparison, is static in structure.  相似文献   

9.
10.
Alkaline phosphatase has been solubilized from porcine intestinal mucosa by two different methods: treatment of the mucosa by Emulphogen BC 720 and papain hydrolysis of enterocyte brush border membrane vesicles. Two different enzyme forms have been obtained by these methods.The two enzyme forms (‘detergent form’ and ‘papain form’) have been purified to homogeneity by similar techniques and exhibit closely related molecular characteristics. However, the detergent form displays a hydrophobic behaviour and aggregates in media free of detergent. The two forms can be differentiated by their electrophoretic mobility on polyacrylamide gel in the absence of sodium dodecyl sulphate.By electrophoresis on polyacrylamide gel in the presence of sodium dodecyl sulphate, it has been shown that the detergent and papain forms of alkaline phophatase are dimers consisting of two apparently identical subunits whose molecular weights are 64 000 and 61 000, respectively. The difference between these molecular weights has been attributed to the existence of a hydrophobic region in the detergent form which is present on each subunit.  相似文献   

11.
12.
The assembly of the intestinal microvillus cytoskeleton during embryogenesis in the chick was examined by immunochemical and light microscopic immunolocalization techniques. For these studies, affinity-purified antibodies reactive with three major cytoskeletal proteins of the adult intestinal microvillus, fimbrin, villin, and the 110-kD subunit of the 110K-calmodulin protein complex were prepared. Immunocytochemical staining of frozen sections of embryonic duodena revealed that all three proteins were present at detectable levels at the earliest stages examined, day 7-8 of incubation (Hamilton/Hamburger stages 25-30). Although initially all three proteins were diffusely distributed throughout the cytoplasm, there was a marked asynchrony in the accumulation of these core proteins within the apical domain of the enterocyte. Villin displayed concentrated apical staining by embryonic day 8 (stage 28), while the apical concentration of fimbrin was first observed at embryonic day 10 (stage 37). Diffuse staining of the enterocyte cytoplasm with the anti-110K was observed throughout development until a few days before hatch. By embryonic day 19-21 110K staining was concentrated at the cell periphery (apical and basolateral). The restricted apical localization characteristic of 110K in the adult brush border was not observed until the day of hatching. Immunoblot analysis of whole, solubilized embryonic duodena confirmed the presence of 110K, villin, and fimbrin throughout development and indicated substantial increases in all three proteins, particularly late in development. Immunoblot staining with anti-110K also revealed the presence of a high molecular mass (200 kD) immunoreactive species in embryonic intestine. This 200-kD form was absent from isolated embryonic enterocytes and may be a component of intestinal smooth muscle.  相似文献   

13.
We examined the nucleated polymerization of actin from the two ends of filaments that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. Three different in vitro preparations were used to nucleate the polymerization of muscle G- actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate filament growth from both ends with a strong bias for one end. Here we identify the barbed end of the core fragment as the fast growing end by decoration with myosin subfragment one. Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the barbed but not the pointed end of MV core fragments. To examine actin assembly from the naturally occurring, membrane-associated ends of MV core filaments, isolated membrane-intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 mM KCl, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G- actin induced the formation of 0.2-0.4 micron "growth zones" at the tips of microvilli. The dense plaque at the tip of the MV core remains associated with the membrane and the presumed growing ends of the filaments. We also observed filament growth from the pointed ends of core filaments in the terminal web. We did not observe filament growth at the membrane-associated ends of core filaments when the latter were in the presence of 2 microM CB or if the low ionic strength incubation step was omitted. Addition of G-actin to demembranated brush borders, which retain the dense plaque on their MV tips, resulted in filament growth from both ends of the MV core. Again, 2 microM CB blocked filament growth from only the barbed (tip) end of the core. The dense plaque remained associated with the tip-end of the core in the presence of CB but usually was dislodged in control preparations where nucleated polymerization from the tip-end of the core occurred. Our results support the notion that microvillar assembly and changes in microvillar length could occur by actin monomer addition/loss at the barbed, membrane-associated ends of MV core filaments.  相似文献   

14.
The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA-containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32-kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby.  相似文献   

15.
Summary Myosin was localized in rat intestinal epithelium by means of indirect immunofluorescence and immunoelectron microscopy (unlabeled antibody peroxidase method), using a specific antibody to myosin from chicken gizzard. Immunoreactivity was localized in the apical cytoplasm, where it was concentrated along the rootlets of the microvillar filament bundles and in the terminal web. A model of microvillar contraction is proposed.  相似文献   

16.
The kinetics of uptake of radioactive label from [U-14C]Gly, L-[4,5-3H]Leu and the dipeptide [14C]Gly-L-[4,5-3H]Leu by the brush border membrane vesicles of porcine small intestine have been studied. The effect of aminopeptidase N inhibitors and leucine-binding protein on accumulation rates has also been tested. Comparison of the kinetic parameters for uptake and hydrolysis of Gly-L-Leu makes it possible to conclude that the dipeptide transfer includes two conjugated steps, viz., hydrolysis catalysed by aminopeptidase N and transport of the resultant free amino acids by a specific carrier.  相似文献   

17.
18.
1. A comparative study of pteroylpolygluatamte hydrolase (folate conjugase) of brush border membrane vesicles from human and porcine intestine was conducted. 2. The enrichment of conjugase activity during membrane isolation was 5-fold greater for the human than the pig. 3. Porcine and human conjugases exhibited similar Km values and could completely hydrolyze pteroyltriglutamate (PteGlu3) to PteGlu1 via an exohydrolytic process. 4. Pteroic acid, PteGlu1 and anionic polysaccharides did not inhibit human or porcine conjugase. 5. Apparent mol. wts for detergent-enzyme complexes were 237,000 (pig) and greater than 500,000 (human). 6. These results indicate similar kinetic properties and mode of action but differences in physical behavior between the intestinal brush border folate conjugases of human and pig.  相似文献   

19.
1. Rabbit small intestinal brush border membranes possessed prominent angiotensin converting enzyme (ACE) activity. 2. Intestinal ACE was located on the lumen surface, as verified by ACE co-enrichment with brush border membrane marker enzymes. 3. Hydrolysis kinetics of rabbit intestinal ACE were comparable to the lung, utilizing the substrate (N-[3-(2-furyl)acryloyl]-L-phenylalanylglycylglycine; the Vmax = 543 +/- 51 mumol/min/g and Km = 0.62 +/- 0.09 mmol/l. 4. Intestinal brush border ACE activity was strongly inhibited by the antihypertensive drug Ramipril, which yielded an IC50 value of 5 nmol/l; the ACE activity remained completely inhibited during 15 days after a single dose of 10 mumol/l Ramipril.  相似文献   

20.
Kinetics of the intestinal brush border proline (Imino) carrier   总被引:2,自引:0,他引:2  
The kinetics of L-proline transport across intestinal brush borders via the Imino carrier were studied using membrane vesicles. The Imino carrier is defined as the agent responsible for L-alanine insensitive. Na+-dependent uptake of L-proline. Initial rate measurements were made under voltage clamped conditions (pD = 0) to investigate L-proline transport as a function of cis and trans Na+ and proline concentrations. Under zero-trans conditions, increasing cis Na+ activated proline uptake with a Hill coefficient of 1.7 and decreased the apparent Kt with no change in Jimax. The Jimax was approximately 60 pmol mg-1 s-1 and the apparent Kt ranged from 0.25 mM at cis Na = 100 to 1.0 mM at cis Na+ = 30 mM. Trans Na inhibited proline uptake via a reduction in Jimax. Trans proline had no significant effect in the absence of trans Na+, but it relieved the trans Na+ inhibition. Under equilibrium exchange conditions, the Jimax was twice that observed under zero-trans conditions. These kinetics of L-proline transport suggest a model in which uptake occurs by a rapid equilibrium iso-ordered ter ter system. Two Na+ ions bind first to the carrier on the cis face of the membrane to increase the affinity of the carrier for proline. The fully loaded complex then isomerizes to release the substrates to the trans side. The partially loaded Na+-only forms are unable to translocate across the membrane. A rate-limiting step appears to be the isomerization of unloaded carrier from the trans to the cis side of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号