首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
When polymorphonuclear leukocytes (PMN) are exposed to most harvests of influenza A virus (depressing virus, DV) for 20 min, chemotactic, secretory, and oxidative functions are depressed upon subsequent exposure to soluble or particulate stimuli. Other harvests of influenza A virus (non-DV) do not alter these activities. The DV-induced changes in multiple functions suggest the virus may interfere with steps involved in PMN activation. Because some of these steps may be regulated by protein phosphorylation, we examined the effect of non-DV and DV on cellular protein phosphorylation. PMN loaded with 32P-labeled inorganic orthophosphate were exposed to non-DV, DV, or buffer for 30 min; cells were then treated with buffer, FMLP (10(-6) M), or PMA (100 ng/ml) for 30 s. Samples were sonicated and centrifuged; cytosolic and particulate fractions were analyzed by SDS-PAGE and autoradiography. Exposure of PMN to either non-DV or DV caused phosphorylation of several cell proteins. However, when DV-treated PMN were then stimulated with FMLP or PMA, further phosphorylation was inhibited compared to non-DV- or buffer-treated cells. This suggests that DV-induced depression of PMN end-stage functions may be due to changes in cell protein phosphorylation. DV could interfere with phosphorylation of PMN proteins by altering protein kinase activity. We therefore examined the influence of non-DV and DV on some parameters that could affect kinase function. PMN intracellular [Ca2+] was monitored by using the fluorescent Ca2+ indicator, Indo 1, and cAMP levels were measured by RIA. PMN treated with DV alone or DV plus FMLP had higher intracellular [CA2+] than PMN similarly treated with non-DV or buffer. Exposure of PMN to non-DV, DV, or buffer caused minimal changes in cAMP levels, and similar increases occurred in cAMP levels upon FMLP stimulation. To determine whether DV interferes with transmembrane signaling, the effect of influenza virus on PMN transmembrane potential was studied by using a fluorescent cyanine dye. Transmembrane potential changes were greater in PMN exposed to DV than to non-DV or buffer; however, subsequent stimulation with FMLP caused equivalent changes in transmembrane potential. Our data show that protein phosphorylation in PMN is induced by DV and non-DV infection; upon subsequent stimulation with FMLP or PMA, there is inhibited cellular phosphorylation only in PMN previously exposed to DV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Human neutrophil polymorphonuclear leukocytes (PMN) were studied to determine the influence of cellular locomotion upon the redistribution and capping of concanavalin A (Con A). Con A was detected by fluorescence (using Con A conjugated to fluorescein isothiocyanate [Con A-FITC]), or on shadow-cast replicas (using Busycon canaliculatum hemocyanin as a marker for Con A). After labeling with Con A 100 µg/ml at 4°C and warming to 37°C, locomotion occurred, and the Con A quickly aggregated into a cap at the trailing end of the cell. When locomotion was inhibited (with cytochalasin B, or by incubation in serum-free medium at 18°C) Con A rapidly formed a cap over the central region of the cell. Iodoacetamide inhibited capping. PMN labeled with FITC, a monovalent ligand, developed caps at the tail only on motile cells; FITC remained dispersed on immobilized cells. PMN exposed to Con A 100 µg/ml at 37°C bound more lectin than at 4°C, became immobilized, and showed slow central capping. The Con A soon became internalized to form a perinuclear ring. Such treatment in the presence of cytochalasin B resulted in the quick formation of persistent central caps. Colchicine (or prior cooling) protected PMN from the immobilizing effect of Con A, and tail caps were found on 30–40% of cells. Immobilization of colchicine-treated cells caused Con A to remain in dispersed clusters. Thus, capping on PMN is a temperature- and energy-dependent process that proceeds independently of cellular locomotion, provided a colchicine-sensitive system is intact and the ligand is capable of cross linking receptors. On the other hand, if the cell does move, it appears that ligands may be swept into a cap at the tail whether cross-linking occurs or not.  相似文献   

3.
Stimulation of human neutrophil adhesive properties by adenine nucleotides   总被引:2,自引:0,他引:2  
Inasmuch as adenine nucleotides may be secreted by platelets during inflammation, we sought to determine whether ATP and related compounds could serve as stimuli of neutrophil (polymorphonuclear cells, PMN) activation as manifested by an increase in their adhesive properties. Exposure of isolated human PMN to ATP or its nonhydrolyzable analog, adenosine 5'-O-(3-thiotriphosphate) did indeed stimulate an increase in cellular adhesive function as assessed by an increase in the surface expression of the leukocyte adhesion-promoting glycoprotein, Mo1 (CD11b/CD18), the initiation of PMN aggregation, and (in the case of ATP) the attachment of increased numbers of albumin-coated polystyrene latex beads. However, this increase in PMN adhesive function was not accompanied by the generation of products of the respiratory burst. These in vitro data suggest the possible influence of secreted adenine nucleotides in promoting neutrophil adhesion-dependent interactions at inflammatory sites in vivo.  相似文献   

4.
Previously, we reported that a derivative of wheat germ agglutinin (termed WGA-D) specifically inhibits human polymorphonuclear leukocyte (PMN) chemotaxis to FMLP by blocking reexpression (or recycling) of formyl peptide receptors. WGA-D (? formyl peptide receptor probe) binds to a protein on the PMN membrane that exhibits the same m.w. as the formyl peptide receptor. Since clustering (i.e., capping) of ligand-receptor complexes most likely precedes their internalization, we examined the ability of normal and stimulated PMN to cap fluoresceinated WGA-D. We found that, in contrast to capping of fluoresceinated Con A, PMN cap WGA-D in a chemotactic factor-specific fashion. Fluoresceinated WGA-D (5.0 to 20 micrograms/ml) alone did not induce either PMN shape changes (i.e., activation) or capping. Both FMLP (1 to 1000 nM) and human C5a (0.1 to 1.0 nM) induced PMN to polarize and to cap bound WGA-D, in a concentration-dependent fashion. Interestingly, leukotriene B4 (LTB4) (5.0 nM), while inducing the same degree of PMN polarization as FMLP (100 nM) and C5a (0.5 nM), failed to induce PMN to cap bound WGA-D. In contrast, FMLP (100 nM), C5a (0.5 nM), and LTB4 (5.0 nM) induced PMN to cap bound fluoresceinated Con A (10 micrograms/ml) to the same extent. The effect of suboptimal concentrations of FMLP and C5a on capping of WGA-D by PMN was additive. LTB4 did not enhance either FMLP or C5a-induced capping of WGA-D by PMN. Also, FMLP and C5a (but not LTB4) were capable of inducing both desensitization and cross-desensitization of WGA-D capping by PMN. Studies using rhodamine-labeled WGA-D and a fluoresceinated analog of FMLP revealed that both capped to the same place on the PMN membrane. Thus, the data suggest that WGA-D binds to a site on the PMN membrane that is either the FMLP receptor or very closely associated with it.  相似文献   

5.
The adherence of serum-opsonized yeast to neutrophils results in phagocytosis of these particulate stimuli and activation of the respiratory burst. Both events are mediated or modulated in part by the surface receptors for IgG and complement. The link between the binding of complex particulate stimuli to the cell surface, and the triggering of these neutrophil functions, is not completely understood. We have previously described an anti-human neutrophil, murine monoclonal antibody PMN7C3, which specifically inhibits the respiratory burst of neutrophils stimulated with serum-opsonized yeast. In the present study, we show that the antigen recognized by PMN7C3 (PMN7 antigen) is present on a number of neutrophil proteins, including the recently described group of related leukocyte membrane glycoproteins CR3, LFA-1, and p150,95. The PMN-7 antigen differs from other antigens associated with the C3bi receptor complex (MAC 1, MO 1, OKM1, OKM10) in that it is present only on neutrophils among peripheral blood cells. Furthermore, the binding of PMN7C3 to the neutrophil surface inhibits the activation of the respiratory burst by serum opsonized zymosan without affecting phagocytosis of these particulate stimuli. The cross-linking of cell surface PMN7 antigen by multivalent antibody is associated with the capping and internalization of antigen-antibody complexes, and appears to be necessary for the expression of maximum inhibition of opsonized zymosan-triggered respiratory burst activity. PMN7C3 also binds to a group of granule-associated proteins biochemically distinct from CR3, LFA-1, and p150,95. These granule-associated proteins containing PMN7 antigen can be mobilized to the cell surface with secretion. PMN7 antigen-bearing proteins may play a role in modulating the activation of the respiratory burst associated with phagocytosis of serum-opsonize zymosan.  相似文献   

6.
The anti-neutrophil mAb PMN 7C3 and IIC4 inhibited the respiratory burst of neutrophils as measured by the generation of superoxide anion or hydrogen peroxide in response to PMA, serum-treated zymosan, and FMLP. To examine the effect of these mAb on neutrophil transmembrane potential, a fluorescent probe was used in a continuous assay. Compared with control cells, antibody-treated neutrophils were partially depolarized at rest and had a blunted response when stimulated. The F(ab)2 fragment of PMN 7C3 had similar effects on both the respiratory burst and transmembrane potential, whereas the Fab fragment did not. The unrelated antineutrophil mAb 31D8 had no effect on either the respiratory burst or on transmembrane potential. Neutrophils suspended in high potassium buffers also exhibited partial depolarization of the resting cell membrane and a blunted depolarization response to stimuli and produced less superoxide anion and hydrogen peroxide in response to stimuli than did control cells in physiologic buffer. Exposure of neutrophils to 2-deoxy-D-glucose resulted in dose- and time-dependent depression of the respiratory burst. 2-Deoxy-D-glucose also caused depolarization of the resting membrane and impaired subsequent stimulus-induced depolarization. Similar effects were seen with addition of iodoacetamide or depletion of glucose. The parallel effects of anti-neutrophil mAb, depolarizing buffers, and glycolytic inhibitors on both neutrophil membrane depolarization and activation of the respiratory burst indicate a close association between these two events. The evidence suggests that the inhibitory effects of these antibodies are mediated through partial membrane depolarization which interferes with signal transduction on subsequent stimulation of the cells. The impairment in oxidative responses to phorbol esters as well as to receptor-dependent activating agents points to interruption at a distal step, e.g., subsequent to Ca2+ mobilization.  相似文献   

7.
Activation of human neutrophils by PMA causes a post-translational incorporation of 14C-labeled tyrosine into multiple neutrophil (PMN) proteins, that is distinctly different from the enzymatic tyrosinolation of tubulin in FMLP-stimulated PMN. Post-translational incorporation of other radiolabeled amino acids, including the structurally similar amino acid phenylalanine, does not occur under identical conditions of neutrophil activation, suggesting an involvement of the phenolic hydroxyl group of tyrosine in the PMA-mediated reaction. Similar to the stimulation of PMN tubulin tyrosinolation by FMLP, the PMA-induced incorporation of tyrosine into multiple PMN proteins is closely associated with activation of the NADPH oxidase-mediated respiratory burst in stimulated PMN and can be inhibited by a variety of reducing agents, inhibitors of peroxidase-mediated reactions, and intracellular scavengers of oxygen radicals. Moreover, the PMA-induced post-translational incorporation of tyrosine does not occur in PMN from patients with chronic granulomatous disease and is significantly reduced (50%) in PMN of an individual with myeloperoxidase deficiency. A similar stimulus-induced incorporation of tyrosine into multiple PMN proteins is also observed in PMN exposed to various phagocytic stimuli, and the incorporated radioactivity in cells undergoing phagocytosis is substantially enriched (40- to 50-fold) in isolated PMN phagolysosomes. Consistent with this latter observation, HPLC fractionation of stimulated PMN proteins and analysis of the incorporated radioactivity reveal that the 14C label is primarily associated with PMN membrane proteins. Furthermore, this post-translational incorporation of tyrosine, like that associated with PMA stimulation, is associated with production of oxygen radicals and the generation of protein carbonyl derivatives, which are indicative of oxidative protein modifications via mixed function oxidases. Our findings indicate that tyrosine incorporation into membrane proteins of stimulated PMN is functionally relevant to the physiologic host-defense responses of human neutrophils undergoing phagocytosis.  相似文献   

8.
The anti-phospholipid syndrome (APS) is characterized by recurrent thrombosis and occurrence of anti-phospholipid antibodies (aPL). aPL are necessary, but not sufficient for the clinical manifestations of APS. Growing evidence suggests a role of innate immune cells, in particular polymorphonuclear neutrophils (PMN) and Toll-like receptors (TLR) to be additionally involved. aPL activate endothelial cells and monocytes through a TLR4-dependent signalling pathway. Whether this is also relevant for PMN in a similar way is currently not known. To address this issue, we used purified PMN from healthy donors and stimulated them in the presence or absence of human monoclonal aPL and the TLR4 agonist LPS monitoring neutrophil effector functions, namely the oxidative burst, phagocytosis, L-Selectin shedding and IL-8 production. aPL alone were only able to induce minor activation of PMN effector functions at high concentrations. However, in the additional presence of LPS the activation threshold was markedly lower indicating a synergistic activation pathway of aPL and TLR in PMN. In summary, our results indicate that PMN effector functions are directly activated by aPL and boosted by the additional presence of microbial products. This highlights a role for PMN as important innate immune effector cells that contribute to the pathophysiology of APS.  相似文献   

9.
BACKGROUND: Human polymorphonuclear granulocytes (PMN) are an essential component in the immunological defense network against a variety of harmful pathogens. We have studied the effects of the airborne pollutant sulfite on the calcium metabolism and respiratory burst of these cells simultaneously. METHODS: A flow cytometric method was developed using the fluochromes Indo-1 and DHR-123. This method allowed us to investigate the real-time kinetics of intracellular free calcium and reactive oxygen intermediates in viable cells with a temporal resolution of 1 s over a time course of 17 min. An additional feature was the possibility to discriminate between reacting and nonreacting cells after treatment with defined stimuli, thus gaining additional insight into the behavior of cell subpopulations. RESULTS: We analyzed the effects of sulfite on PMN before and after stimulation with formyl-Met-Leu-Phe (FMLP). Treatment with sulfite alone (0.001-1 mM) caused a small, nontransient increase in intracellular calcium. Preincubation with sulfite reduced the maximal calcium response elicited by FMLP. A significant increase in steady-state calcium levels after stimulation with FMLP was observed after treatment with sulfite in concentrations of 10 and 100 mM. Regarding the respiratory burst, treatment with sulfite alone in concentrations of 0.001-1 mM induced a significant increase in DHR-123-derived fluorescence, whereas concentrations of 5 and 10 mM caused a significant depression of this fluorescence below baseline values. Sulfite caused a maximal twofold increase of DHR-123-derived fluorescence compared with the FMLP response. Similar results were obtained after preincubation with sulfite before treatment with FMLP, showing that the effect of sulfite on the respiratory burst was additive to the FMLP response. Regarding the fractions of responding cells, treatment with sulfite up to 1 mM induced a concentration-dependent increase of burst-reactive PMN, whereas preincubation before stimulation with FMLP showed no correlation between sulfite concentration and fraction of burst-reacting cells. CONCLUSIONS: By simultaneous registration of [Ca(2+)](i) and [H(2)O(2)](i) of PMN after treatment with FMLP and sulfite, the essential responses were already observed within a short time interval (15 min). Striking differences were found in the response of calcium as second messenger and respiratory burst in PMN treated with sulfite. Until a critical concentration (0. 5-1 mM), sulfite caused a concentration-dependent increase of [H(2)O(2)](i), in addition to the FMLP-induced response. The [Ca(2+)](i) changes induced by sulfite alone, however, were found to be small and showed no correlation with the respiratory burst response.  相似文献   

10.
Leukocyte recruitment to inflammatory foci is generally associated with cellular activation. Recent evidence suggests that chemotactic agents can be divided into two classes, “classical chemoattractants” such as FMLP, C5a, and IL-8, which stimulate directed migration and activation events and “pure chemoattractants” such as TGF-β1 which influence actin polymerisation and movement but not oxidative burst and associated granular enzyme release. The studies reported here demonstrate that the murine S100 chemoattractant protein, CP-10, belongs to the “non-classical” group. Despite its potent chemotactic activity for neutrophils and monocytes/macrophages, CP-10 failed to increase [Ca2+]i in human or mouse PMN, although chemotaxis was inhibited by pertussis toxin, confirming the suggestion of a novel Ca2+-independent G-protein-coupled pathway for post-receptor signal transduction triggered by “pure chemoattractants.” The co-ordinated up-regulation of Mac-1 and down-regulation of L-selectin induced by FMLP on human PMN in vitro was not observed with CP-10. Quantitative changes in immediate (30 s) actin polymerisation occurred with FMLP and CP-10-treated human PMN. The relative F-actin increases induced in WEHI 265 monocytoid cells by FMLP and CP-10 was optimal at 60 s and declined over 120 s. F-actin changes reflected the concentration and potencies of the agonists required to provoke chemotaxis. After 90 min, CP-10 profoundly altered cell shape and increased both cell size and F-actin within pseudopodia. These changes are typical of those mediating leukocyte deformability, and CP-10 may mediate leukocyte retention within microcapillaries and thereby contribute to the initiation of inflammation in vascular beds. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The transport properties of the rabbit peritoneal polymorphonuclear leukocyte (PMN) plasma membrane to Na+, K+, and Ca2+ have been characterized. The use of a silicone oil centrifugation technique provided a rapid and reliable method for measuring ion fluxes in these cells. Na+ and K+ movements across PMN membranes were found to be rapid. The value for the unifirectional steady-state fluxes (in meq/liter cell X min) were of the order of 3.0 for Na+ and 7.4 for K+. Ouabian inhibited both K+ influx and Na+ efflux, the latter being also dependent on the presence of extracellular potassium. The rate constant (in min-1) for 45Ca influx was found to be .05 and that for 45Ca efflux .04. The synthetic chemotactic factor formyl-methionyl-leucyl-phenylalanine (FMLP) was found to affect the fluxes of Na+, K+, and Ca2+ at concentrations as low as 10(-10)M. FMLP induced a large and rapid increase in the permeability of the PMN plasma membrane to 22Na. Smaller and delayed enhancements of 42K influx and 22Na efflux were also noted. Some evidence that the latter findings are a consequence of the increased 22Na influx is presented. 45Ca influx and efflux were also stimulated by FMLP. In the presence of 0.25 mM extracellular calcium, FMLP induced an increase in the steady-state level of cell-associated 45Ca. In the presence of .01 mM extracellular calcium, however, a transient decrease in the steady-state level of cell-associated 45Ca was induced by FMLP. The curves relating the concentration of FMLP to its effects on cation fluxes are very similar to those found for its enhancement of migration.  相似文献   

12.
抗体包被瘤细胞膜引发人血多形核白细胞化学发光   总被引:1,自引:0,他引:1  
用抗体包被K562细胞膜碎片(Ab-M)刺激人血多形核白细胞(PMN)产生化学发光,对其发光动力学及活性氧代谢特征进行了比较,结果表明Ab-M引发PMN发光动力学与酵母多糖不同.用秋水仙碱干扰PMN膜结构完整性可抑制其发光产额,Ca2+可促增PMN发光,提示PMN氧代谢的调控与Fc受体和Ca2+动员有关;活性氧系PMN实施细胞毒效应的重要物质.  相似文献   

13.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

14.
We observed that the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L- phenylalanine (FMLP) induced pulmonary edema when polymorphonuclear leukocytes (PMNs) were added to isolated constant-flow buffer-perfused rabbit lungs. This study was designed to test the hypothesis that PMNs activated by FMLP induced lung injury by the modulation of reactive oxygen species (ROS), cyclooxygenase products, or cysteinyl leukotrienes (LTs). Addition of FMLP alone did not increase microvascular permeability (Kf). When PMNs were added to the isolated lung, FMLP caused an 80% increase in Kf. Wet-to-dry weight ratio was also significantly increased with PMNs + FMLP compared with FMLP only. There was a significant positive correlation between total myeloperoxidase activity in lung tissue and Kf values after FMLP (30 min). Pretreatment with two dissimilar cyclooxygenase inhibitors, meclofenamate or ibuprofen, had no effect on the PMN + FMLP-induced increase in Kf. However, the ROS inhibitor catalase and the nonantioxidant LT synthesis blocker MK 886 inhibited the PMN + FMLP increase in Kf. Perfusate levels of LTs (LTC4, -D4, and -E4) were significantly increased from baseline values 30 min after FMLP. Both MK 886 and catalase suppressed the elevation of LTs after PMN + FMLP. These results indicate that FMLP increased a pulmonary microvascular permeability in isolated buffer-perfused rabbit lungs that is PMN dependent and mediated by LT produced possibly by a result of ROS production.  相似文献   

15.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

16.
This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding polymorphonuclear leukocytes.  相似文献   

17.
Body temperature can modulate the pathogenesis of infectious, metabolic and autoimmune diseases. This effect has been attributed to several hypothesized mechanisms. Body temperature could play an important role in influencing some cellular functions of human white blood cells. In this work we examined the temperature effect on the respiratory burst in human neutrophils. Human polymorphonuclear leucocytes (PMN) were obtained from heparinized venous blood by dextran sedimentation and erythrocyte lysis with NH4Cl (0.87%). Granulocytes were stimulated with opsonized zymosan (OZ), formyl-methionyl-leucyl-phenylalanine (FMLP), phorbol myristate acetate (PMA), and monosodium urate (MSU) crystals at different temperatures (26, 37, 39, 40, 42 degrees C). The technique of luminol dependent chemiluminescence (CL) was used as indicator of oxygen free radicals (OFR) release by stimulated cells. OFR production from PMN stimulated with OZ, PMA, FMLP was higher at 37 degrees C than at 26, 39, 40, 42 degrees C (p < 0.001 OZ stimulated PMN at 40-42 degrees C; p < 0.05 PMA stimulated PMN at 42 degrees C. Significantly different from 37 degrees C value). OFR release from PMN stimulated with MSU crystals was significantly increased at 39 degrees C compared to 37 degrees C value (p < 0.001). This effect could not only be attributed to temperature influence on neutrophil activity. The specific polymorphonuclear leukocyte response to the microcrystals and the temperature influence on chemical and physical characteristics of the crystals may play an important role. We are now studying the temperature effect on activity of PMN exposed to others crystals.  相似文献   

18.
It is known that low intensity magnetic fields increase superoxide anion production during the respiratory burst of rat peritoneal neutrophils in vitro. We investigated whether the high intensity magnetic fields (1.5 T) during magnetic resonance imaging can influence the human neutrophil function under in vivo conditions. Blood samples were obtained from 12 patients immediately before and after magnetic resonance imaging (mean time 27.6(+/-11.4 min)). The induced respiratory burst was investigated by the intracellular oxidative transformation of dihydrorhodamine 123 to the fluorescent dye rhodamine 123 via flow cytometry. The respiratory burst was induced either with phorbol 12-myristate 13-acetate, Escherichia coli, N-formyl-methionyl-leucylphenylalanine or priming with tumor necrosis factor followed by FMLP stimulation. There was no significant difference between the respiratory burst before and after magnetic resonance imaging, irrespective of the stimulating agent. Short time exposure to a high intensity magnetic field during magnetic resonance imaging seems not to influence the production of radical species in living neutrophils.  相似文献   

19.
After being treated with rTNF, polymorphonuclear neutrophils (PMN) were highly suppressive to the growth of four different tumor target cells, Raji, K562, UCLA-SO-M14, and U937. Neutralizing TNF with specific antibodies before PMN were treated blocked induction of the anti-proliferative activity against Raji. However, after PMN were exposed to TNF the cytostatic activity could not be reversed by the antibody or by washing off TNF, indicating that the continuous presence of TNF was not required for expression of the anti-proliferative function. Addition of the hydrogen peroxide (HP) scavenger, catalase, at the beginning of the assay inhibited the cytostatic activity, suggesting that HP was involved in suppressing the tumor cell growth. In contrast, other reactive oxygen species inhibitors such as superoxide dismutase, sodium azide, L-methionine, or deferoxamine did not inhibit the cytostasis. HP alone at above 10 microM was cytostatic to Raji cells. The presence of TNF did not increase the sensitivity of Raji to HP. TNF activated PMN to produce HP but the amount of HP released in the culture supernatant was too low for direct cytostasis. PMN also became more adherent after TNF treatment. Therefore, the TNF-induced cytostasis may be mediated by local high concentrations of HP produced by PMN.  相似文献   

20.
Abstract Porphyromonas gingivalis culture supernate was found to induce hemotypic agglutination of human polymorphonuclear leukocytes (PMN). Pretreatment of PMN with P. gingivalis supernate inhibited both the rate and the degree of aglutination induced by the secretagogues PMA and FMLP. Lipopolysaccaharide from P. gingivalis upregulated the CR3 (Mac-1, CD11b) receptors of PMN. Treatment of glass-adherent PMN with P. gingivalis supernate did not alter their phagocytic capacity fot P. gingivalis cells but when PMN were treated in suspension the cells adhered less well to glass and phagocytosis of those PMN that did adhere was reduced. P. gingivalis supernate treatment of PMN induced lysozyme release but the amount released during phagocytosis when supernate was present did not change. Neither P. gingivalis supernate nor LPS were cytotoxic for PMN. The data suggest that P. gingivalis factors could interfere with PMN elimination of this organism at the site of infection by inappropriately stimulating PMN, depressing phagocytosis and causing enhanced CR3 expression. The consequent agglutinatin or enhanced adherence could also lead to decreased phagocytic capacity of the adherant or agglutinated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号