首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-two partial formyltetrahydrofolate synthetase (FTHFS) structural gene sequences were recovered from roots of salt marsh plants, including Spartina alterniflora, Salicornia virginica, and Juncus roemerianus. Only S. alterniflora roots yielded sequences grouping with FTHFS sequences from known acetogens. Most other FTHFS or FTHFS-like sequences grouped with those from sulfate-reducing bacteria. Several sequences that grouped with Sphingomonas paucimobilis ligH were also recovered.  相似文献   

2.
Primers for PCR amplification of partial (1,102 of 1,680 bp) formyltetrahydrofolate synthetase (FTHFS) gene sequences were developed and tested. Partial FTHFS sequences were successfully amplified from DNA from pure cultures of known acetogens, from other FTHFS-producing organisms, from the roots of the smooth cordgrass, Spartina alterniflora, and from fresh horse manure. The amplimers recovered were cloned, their nucleotide sequences were determined, and their translated amino acid sequences were used to construct phylogenetic trees. We found that FTHFS sequences from homoacetogens formed a monophyletic cluster that did not contain sequences from nonhomoacetogens and that FTHFS sequences appear to be informative regarding major physiological features of FTHFS-producing organisms.  相似文献   

3.
Primers for PCR amplification of partial (1,102 of 1,680 bp) formyltetrahydrofolate synthetase (FTHFS) gene sequences were developed and tested. Partial FTHFS sequences were successfully amplified from DNA from pure cultures of known acetogens, from other FTHFS-producing organisms, from the roots of the smooth cordgrass, Spartina alterniflora, and from fresh horse manure. The amplimers recovered were cloned, their nucleotide sequences were determined, and their translated amino acid sequences were used to construct phylogenetic trees. We found that FTHFS sequences from homoacetogens formed a monophyletic cluster that did not contain sequences from nonhomoacetogens and that FTHFS sequences appear to be informative regarding major physiological features of FTHFS-producing organisms.  相似文献   

4.
In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.  相似文献   

5.
Numbers and possible locations of N(2)-fixing bacteria were investigated in roots of Spartina alterniflora Loisel, which support nitrogenase activity in the undisturbed native habitat. N(2)-fixing bacteria were recovered in cultures both from S. alterniflora roots and from the surrounding sediment, and they formed a greater proportion of the bacteria recovered from root homogenates than from salt-marsh sediment. N(2)-fixing bacteria were recovered in high numbers from the rhizoplane of S. alterniflora after roots were treated with 1 or 5% chloramine-T for 1 h or with 1% NaOCl for 1 or 2 h. Immersing S. alterniflora roots in 5% NaOCl for 1 h was more effective in distinguishing bacteria inside the roots since this treatment nearly eliminated N(2)-fixing bacteria recoverable from the rhizoplane, although high numbers of N(2)-fixing bacteria were recovered from homogenates of roots treated with 5% NaOCl for 1 h. However, this treatment was less effective with roots of Zea mays L. (Funks G4646) and Sorghum bicolor (L.) Moench (CK-60 A), indicating that techniques to surface sterilize roots should be evaluated for different plants. Bacteria were observed by light and electron microscopy inter- and intracellularly in the cortex and in the aerenchyma of S. alterniflora roots. This study clearly shows that bacteria, including N(2) fixers, colonize the interior of roots of S. alterniflora growing in a Chesapeake Bay, Maryland, salt marsh.  相似文献   

6.
We analysed fragments of the formyltetrahydrofolate synthetase (FTHFS) gene, which encodes a key enzyme in reductive acetogenesis, from the bacterial flora in the proximal (PC) and mid (MC) colon of three ostriches to assess and compare bacterial diversity in this organ. Two clone libraries of FTHFS fragments were constructed from DNA extracted from digesta of the PC and MC, and a total of 46 cloned sequences were analysed from each library. A wide variety of FTHFS sequences were recovered. The coverage of the PC and MC libraries was 90.0% and 83.3%, respectively. Shannon–Wiener index (H’) and Chao1 of the MC library were higher than those of PC library. The sequences from each library were classified into 15 operational taxonomic units (OTUs) and clusters. Only four OTUs in cluster I were distantly related to known acetogens from human feces and rumen, suggesting the presence of the novel acetogens. Phylogenetic analysis suggests that composition of FTHFS sequences differs for the PC and MC.  相似文献   

7.
Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.  相似文献   

8.
N(2) fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the gamma subdivision of the division Proteobacteria (gamma-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the alpha-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

9.
The complete nucleotide sequence of the Clostridium thermoaceticum formyltetrahydrofolate synthetase (FTHFS) was determined and the primary structure of the protein predicted. The gene was 1680 nucleotides long, encoding a protein of 559 amino acid residues with a calculated subunit molecular weight of 59,983. The initiation codon was UUG, with a probable ribosome binding site 11 bases upstream. A putative ATP binding domain was identified. Two Cys residues likely to be involved in subunit aggregation were tentatively identified. No characterization of the tetrahydrofolate (THF) binding domain was possible on the basis of the sequence. A high level of amino acid sequence conservation between the C. thermoaceticum FTHFS and the published sequences of C. acidiurici FTHFS and the FTHFS domains of the Saccharomyces cerevisiae C1-THF synthases was found. Of the 556 residues shared between the two clostridial sequences, 66.4% are identical. If conservative substitutions are allowed, this percentage rises to 75%. Over 47% of the residues shared between the C. thermoaceticum FTHFS and the yeast C1-THF synthases are identical, 57.4% if conservative substitutions are allowed. Hydrophobicity profiles of the C. acidiurici and C. thermoaceticum enzymes were very similar and did not support the idea that large hydrophobic domains play an important role in thermostabilizing the C. thermoaceticum FTHFS.  相似文献   

10.
Homoacetogens produce acetate from H2 and CO2 via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a “homoacetogen similarity” (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.Feed ingested by ruminant animals is fermented in the rumen by a complex community of microbes. This community produces, among other products, the volatile fatty acids acetate, propionate, and butyrate, which are absorbed across the rumen wall and satisfy a large part of the animals'' carbon and energy requirements. Hydrogen gas (H2) is also formed and is the major precursor of the methane (CH4) formed in ruminant animals. This ruminant-derived CH4 is a contributor to global greenhouse gas emissions (46) and also represents an energy loss for the animals (34). Proposed ruminant greenhouse gas mitigation strategies include using feeds that produce less CH4 and more volatile fatty acids (31). Alternative strategies include interventions that slow or halt methanogenesis by vaccination, using natural inhibitors found in plants, and supplementing feed with fats and oils or small-molecule inhibitors (31, 32). In the absence of methanogenesis, accumulation of H2 could lead to a decrease in the rate of feed fermentation (31, 53) and hence a decrease in animal productivity. Other microbes that use H2 without producing methane could be valuable in conjunction with intervention strategies that inhibit methanogens. This possibility has sparked interest in possible inoculation of ruminants with alternative H2 users.Bacteria that use the Wood-Ljungdahl pathway to produce acetate from CO2 are metabolically (6) and phylogenetically (48) diverse and are designated “homoacetogens.” Homoacetogens grow with H2 or other suitable electron donors, such as formate or sugars, plus CO2 as a terminal electron acceptor, heterotrophically with organic substrates such as sugars and methoxylated compounds, or mixotrophically with, e.g., H2 and organic substrates. Homoacetogens have been reported to occur in a normally functioning rumen, but they are unlikely to compete with methanogens for H2 (24, 25, 34). However, homoacetogens could play an important role in the disposal of H2 if methanogens are not established in or are eliminated from the rumen (11, 17). At present, it is not clear whether resident rumen homoacetogens could fulfill the H2 disposal role or whether homoacetogens would have to be added to the rumen to take over this role from the methanogens.Cultivation-based enumeration techniques have shown that the sizes of rumen acetogen populations range from undetectable to 1.2 × 109 per g of rumen contents and that the prevalence of these acetogens depends on diet, animal age, and time of sampling (5, 7, 23, 24). Several homoacetogens, including Acetitomaculum ruminis (15), Eubacterium limosum (14, 17), Blautia schinkii, and Blautia producta (11), have been isolated from ruminants. Homoacetogens have also been isolated from the kangaroo forestomach, whose function is analogous to that of the rumen, which suggests that homoacetogenesis may play a role in hydrogen removal in the low-methane-emission forestomach (37).Because homoacetogens occur in different lineages of bacteria (48), traditional 16S rRNA gene-based surveys provide little information on their prevalence. The formyltetrahydrofolate synthetase (FTHFS) gene (fhs) has been used as a functional marker for homoacetogens, as the enzyme that it encodes catalyzes a key step in the reductive acetogenesis pathway (26). The structure of the enzyme of the homoacetogen Moorella thermoacetica has been reported, and putative functional features have been identified (27, 41, 42). FTHFS sequences from true homoacetogens differ from their homologs in sulfate-reducing bacteria and in other bacteria that degrade purines and amino acids via the glycine synthase-glycine reductase pathway (12, 21, 22, 26). At present, only a limited number of FTHFS sequences have been deposited in databases, and the vast majority of them are partial sequences retrieved from complex microbial communities. FTHFS sequences have been surveyed in sludge (39, 43, 54), termites (40, 44), salt marsh plant roots (21), horse manure (22), cow manure, freshwater sediment, rice field soil, and sewage (54), but so far only one study has investigated bovine ruminal FTHFS sequences (30). The rumen FTHFS sequences had low levels of similarity to the FTHFS sequences of known homoacetogens and could be sequences of novel homoacetogens. To our knowledge, no bacteria with these unique FTHFS sequences have been identified.The aims of this study were to assess the diversity of FTHFS gene sequences retrieved from rumen samples and to screen novel rumen isolates for the presence of FTHFS genes and test their ability to grow as homoacetogens. We used alignments of FTHFS sequences to define a homoacetogen similarity score based on the presence of diagnostic amino acids and developed a hidden Markov model to assess the likelihood that FTHFS sequences of unknown origin are sequences from true homoacetogens that are able to use H2 or alternative electron donors for reductive acetogenesis.  相似文献   

11.
以不同盐度下生长的互花米草(Spartina alterniflora)为材料,采用常规石蜡切片法对其根的横切结构进行显微观察,比较不同盐度下互花米草根结构的特点及变化规律,研究互花米草根对盐浸环境的适应性。观察结果显示:(1)互花米草根只有初生结构;(2)成熟根的表皮细胞基本毁坏、脱落;(3)互花米草根具有发达的外皮层和皮层通气组织,内皮层细胞壁五面加厚明显,且随盐度的升高呈先增大后减小的趋势;(4)维管柱中央被机械组织所填充,中柱鞘细胞壁也出现加厚现象。互花米草根的结构体现了其对盐浸环境的适应性特征。  相似文献   

12.
Elmer WH  Marra RE 《Mycologia》2011,103(4):806-819
Sudden vegetation dieback (SVD) is the loss of smooth cordgrass (Spartina alterniflora) along intertidal creeks in salt marshes of the Atlantic and Gulf states. The underlying cause of SVD remains unclear, but earlier work suggested a contributing role for Fusarium spp. in Louisiana. This report investigated whether these or other Fusarium species were associated with S. alterniflora dieback in mid- to north-Atlantic states. Isolations from seven SVD sites yielded 192 isolates of Fusarium spp., with more than 75% isolated from aboveground tissue. Most isolates (88%) fell into two undescribed morphospecies (MS) distinguished from each other by macroconidial shape, phialide ontogeny and growth rates. Pathogenicity tests on wound-inoculated S. alterniflora stems and seedling roots revealed that isolates in MS1 were more virulent than those in MS2 but no single isolate caused plant mortality. No matches to known species of Fusarium were revealed by DNA sequence queries of translation elongation factor 1-α (tef1) sequences. A phylogenetic analysis of partial sequences of three genes, β-tubulin (β-tub), calmodulin (cal) and tef1, was conducted on representative isolates from MS1 (n = 20) and MS2 (n = 18); it provided strong evidence that the MS1 isolates form a clade that represents a heretofore undescribed species, which we designate Fusarium palustre sp. nov. Isolates from the more variable MS2 clustered with the F. incarnatum-equiseti species complex as F. cf. incarnatum. Although a strong association exists between both species and declining S. alterniflora in SVD sites, neither appears to play a primary causal role in SVD. However, our findings suggest that F. palustre might play an important secondary role in the ecological disruption of the salt marshes.  相似文献   

13.
Kewei Xu  He Liu  Guocheng Du  Jian Chen   《Anaerobe》2009,15(5):204-213
Acetogens are ubiquitous in many anaerobic habitats and play a very important role in bioconversion and biodegradation of organic compounds. Methods for rapid detection and quantification of acetogens in different environments are urgently needed to understand the in situ activities in complicated microbial communities. To overcome the limitations of culture-dependent methods and provide enhanced diagnostic tools for determination of the ecological roles of acetogens in different habitats, a quantitative real-time PCR (qrt-PCR) approach targeting functional FTHFS (fhs) gene encoding the formyltetrahydrofolate synthetase was developed. Novel primers flanking the FTHFS fragment were designed and tested. High specificity and sensitivity for estimation of the abundance of acetogens were confirmed analysis of a collection of acetogens, clone libraries and melting curves. The utility of the assay was validated and used in quantifying the FTHFS gene present in different anoxic and oxic habitats, including anoxic and oxic sludges, lake sediment, sewage sullage as well as flooded rice field soils. The abundance of FTHFS gene recovered by fhs1 assay was in the order of magnitude of 105 up to 107 copies per gram of dry weight sample, and the maximum calculated abundance of acetogens relative to Eubacteria was 0.6–0.9%, confirming the low proportion of acetogens to total bacteria in environments.  相似文献   

14.
Washed excised roots of rice (Oryza sativa) immediately started to produce CH4 when they were incubated in phosphate buffer under anoxic conditions (N2 atmosphere), with initial rates varying between 2 and 70nmolh(-1)g(-1) dry weight of root material (mean +/- SE: 20.3 +/- 5.9 nmol h(-1) g(-1) dry weight; n = 18). Production of CH4 continued for at least 500 h, with rates usually decreasing slowly. CH4 production was not significantly affected by methyl fluoride, an inhibitor of acetoclastic methanogenesis. Less than 0.5% of added [2-14C]-acetate was converted to 14CH4, and conversion of 14CO2 to 14CH4 indicated that CH4 was almost exclusively produced from CO2. Occasionally, however, especially when the roots were incubated without additional buffer, CH4 production started to accelerate after about 200h reaching rates of > 100 nmol h(-1) g(-1) dry weight. Methyl fluoride inhibited methanogenesis by more than 20% only in these cases, and the conversion of 14CO2 to 14CH4 decreased. These results indicate that CO2-dependent rather than acetoclastic methanogenesis was primarily responsible for CH4 production in anoxically incubated rice roots. Determination of most probable numbers of methanogens on washed roots showed highest numbers (10(6)g(-1) dry roots) on H2 and ethanol, i.e. substrates that support CH4 production from CO2. Numbers on acetate (10(5) g(-1) dry roots) and methanol (10(4)g(-1) dry roots) were lower. Methanogenic consortia enriched on H2 and ethanol were characterized phylogenetically by comparative sequence analysis of archaeal small-subunit (SSU) ribosomal RNA-encoding genes (rDNA). These sequences showed a high similarity to SSU rDNA clones that had been obtained previously by direct extraction of total DNA from washed rice roots. The SSU rDNA sequences recovered from the H2/CO2-using consortium either belonged to a novel lineage of methanogens that grouped within the phylogenetic radiation of the Methanosarcinales and Methanomicrobiales or were affiliated with Methanobacterium bryantii. SSU rDNA sequences retrieved from the ethanol-using consortium either grouped within the genus Methanosarcina or belonged to another novel lineage within the phylogenetic radiation of the Methanosarcinales and Methanomicrobiales. Cultured organisms belonging to either of the two novel lineages have not been reported yet.  相似文献   

15.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

16.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

17.
Formyltetrahydrofolate synthetase (FTHFS) from the thermophilic homoacetogen, Moorella thermoacetica, has an optimum temperature for activity of 55-60 degrees C and requires monovalent cations for both optimal activity and stabilization of tetrameric structure at higher temperatures. The crystal structures of complexes of FTHFS with cesium and potassium ions were examined and monovalent cation binding positions identified. Unexpectedly, NH(4)(+) and K(+), both of which are strongly activating ions, bind at a different site than a moderately activating ion, Cs(+), does. Neither binding site is located in the active site. The sites are 7 A apart, but in each of them, the side chain of Glu 98, which is conserved in all known bacterial FTHFS sequences, participates in metal ion binding. Other ligands in the Cs(+) binding site are four oxygen atoms of main chain carbonyls and water molecules. The K(+) and NH(4)(+) binding site includes the carboxylate of Asp132 in addition to Glu98. Mutant FTHFS's (E98Q, E98D, and E98S) were obtained and analyzed using differential scanning calorimetry to examine the effect of these mutations on the thermostability of the enzyme with and without added K(+) ions. The addition of 0.2 M K(+) ions to the wild-type enzyme resulted in a 10 degrees C increase in the thermal denaturation temperature. No significant increase was observed in E98D or E98S. The lack of a significant effect of monovalent cations on the stability of E98D and E98S indicates that this alteration of the binding site eliminates cation binding. The thermal denaturation temperature of E98Q was 3 degrees C higher than that of the wild-type enzyme in the absence of the cation, indicating that the removal of the unbalanced, buried charge of Glu98 stabilizes the enzyme. These results confirm that Glu98 is a crucial residue in the interaction of monovalent cations with FTHFS.  相似文献   

18.
Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.  相似文献   

19.
王涛涛  杨勇  魏唯  林辰涛  马留银 《遗传》2020,(2):194-211,I0006
互花米草(Spartina alterniflora)作为一种海岸带盐生植物,高度耐盐胁迫,但因为缺少参考基因组,其耐盐的分子机制却尚未见报道。NAC家族蛋白是植物特有的转录因子,调控植物的生长发育和胁迫应答。为了鉴定互花米草NAC蛋白(SaNAC)并探究它们与互花米草生长发育及胁迫响应之间的关系,本研究以互花米草三代全长转录组数据为参考,通过与水稻(Oryza sativa)、拟南芥(Arabidopsis thaliana)和玉米(Zea mays)NAC蛋白序列进行比对,并结合保守功能域进一步筛选,最终找到62个SaNAC蛋白。从蛋白序列比对、进化、motif预测、同源性比较、亚细胞定位、组织表达以及非生物胁迫下的基因差异表达等方面分别对互花米草NAC家族成员进行分析,结果发现SaNAC蛋白均含有保守的NAM结构域,且在进化上与水稻NAC家族具有一定的相似性;SaNAC家族中的两个蛋白SaNAC9和SaNAC49在细胞核表达;另外,本研究还发现互花米草SaNAC基因表达具有高度组织和胁迫应答差异性。这些结果表明互花米草NAC转录因子家族不仅具有保守的功能域,而且在调控互花米草的生长发育和非生物胁迫响应过程中具有重要的作用。  相似文献   

20.
Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号