首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of gamma-hydroxybutyrate (GHB) (300-600 microM) in the incubation medium of rat hippocampal slices led to an increase of intracellular cyclic GMP and inositol phosphates. This phenomenon is dependent on the time and the dose of GHB used and might be the result of the stimulation of GHB receptor sites which are abundant in rat hippocampus. The increase of cyclic GMP and inositol phosphates is blocked by some anticonvulsants and opiate antagonists. These results seems to indicate that, like many substances inducing epileptic phenomena, GHB provokes neuronal depolarization in hippocampus which is accompanied by formation of cyclic GMP and inositol phosphates. The effect of opiate antagonists can be explained by the possible implication of an opiate synapse which mediates GHB effects in rat hippocampus.  相似文献   

2.
Beta-N-oxalylamino-l-alanine (BOAA), a non-protein amino acid present in the seeds of Lathyrus Sativus (LS), is one of several neuroactive glutamate analogs reported to stimulate excitatory receptors and, in high concentrations, cause neuronal degeneration. In the present study, the in vivo acute effects of synthetic BOAA and LS seed extract were investigated on rat cerebellar cyclic GMP following intraperitoneal (10–100 mg/kg) or oral (100 mg/kg) administration of subconvulsive doses of toxin. Furthermore, the BOAA content in LS seeds and in the cerebellum of injected rats was determined by high performance liquid chromatograph analysis. A dose- and time-dependent increase of cerebellar cyclic guanosine monophosphate (cGMP) level was observed after intraperitoneal administration of synthetic BOAA or LS extract. The neurotoxin evoked a maximum stimulation 90 min after injection within the dose range of 50–75 mg/kg, elevating cGMP from basal levels of 5.3±0.5 pmol/mg protein to 15±1.3 pmol/mg protein. Similarly, the oral intake of LS-extracted neurotoxin resulted in the elevation of cGMP content. Kynurenic acid (300 mg/kg i.p.), a non specific excitatory amino acid antagonist, was effective in blocking LS BOAA-elicited cGMP enhancement. The data suggest that in the cerebellum acute administration of low concentrations of BOAA exert in vivo activation of glutamate receptors involved in the regulation of cGMP level.  相似文献   

3.
Nitric oxide (NO) exerts cytoprotective effects against hepatic ischemia-reperfusion damage. This study was designed to evaluate which isoform of NO synthase (NOS) is implicated in the generation of cytoprotective NO and to investigate whether NO effects are mediated by cyclic GMP (cGMP). After partial ischemia for 45 min, liver damage was estimated by the release into plasma of cytolytic enzymes. Ischemia-reperfusion induced marked increases in plasma creatine kinase and lactate dehydrogenase after 1 h of reperfusion and of aminotransferases after 6 h of reperfusion. The pretreatment of ischemic rats with 8-bromo-cGMP (16 mg/kg i.v. 30 min before ischemia) or with L-arginine (the endogenous precursor of NO, 100 mg/kg i.v.) significantly diminished the ischemia-reperfusion-induced release of all these enzymes. This demonstrates that cGMP possesses hepatoprotective properties. By immunohistochemistry, we observed, after 6 h of reperfusion, an increase in endothelial NOS-III immunoreactivity, particularly in the small arteries and sinusoids. This NOS-III accumulation in endothelial cells could protect the liver against ischemia-reperfusion by the local generation of NO probably via cGMP.  相似文献   

4.
gamma-Hydroxybutyrate (GHB) naturally occurs in the brain, but its exogenous administration induces profound effects on the central nervous system in animals and humans. The intracellular signaling mechanisms underlying its actions remain unclear. In the present study, the effects of GHB on the activation (phosphorylation) of mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase 1 and 2 (ERK1/2), were investigated. Acute administration of GHB (500 mg/kg, intraperitoneal) induced a fast and long lasting inhibition of MAP kinase phosphorylation in both frontal cortex and hippocampus. The reduced MAP kinase phosphorylation was observed in the CA1 and CA3 areas but not in the dentate gyrus. Pretreatment with the specific gamma-aminobutyric acid, type B (GABAB), receptor antagonist CGP56999A (20 mg/kg, intraperitoneal) prevented the action of GHB, and the effect of GHB was mimicked by baclofen, a selective GABAB receptor agonist, whereas the high affinity GHB receptor antagonist NCS-382 (200 mg/kg, intraperitoneal) had no effect on GHB-inhibited MAP kinase phosphorylation. Moreover, the GHB dehydrogenase inhibitor valproate (500 mg/kg, intraperitoneal), which inhibits the conversion of GHB into GABA, failed to block the effect of GHB on MAP kinase phosphorylation. Altogether, these data suggest that GHB, administered in vivo, reduces MAP kinase phosphorylation via a direct activation of GABAB receptors by GHB. In contrast, GHB (10 mm for 15 min) was found ineffective on MAP kinase phosphorylation in brain slices, indicating important differences in the conditions required for the second messenger activating action of GHB.  相似文献   

5.
We determined cyclic AMP and cyclic GMP levels in 18 regions of rat brain following administration of two different centrally active cholinergic agonists. Administration of oxotremorine (2 mg/Kg IP), a muscarinic agonist, 10 minutes prior to sacrifice by exposure to high power microwave irradiation resulted in significant increases in cyclic GMP in cerebellum, brainstem, hippocampus, midbrain, thalamus and septal region. Cyclic AMP levels were significantly elevated in substantia nigra, nucleus interpeduncularis, hypothalamus, brainstem, midbrain and in the pituitary where a greater than tenfold increase was observed. Levels of plasma prolactin and corticosterone did not differ in any of the groups examined, but growth hormone was significantly lower in animals exposed to oxotremorine. Physostigmine (0.5 mg/Kg) a cholinesterase inhibitor, administered IP also produced elevations in cyclic AMP and cyclic GMP in several of the brain regions examined. These results indicate that multiple regions of the brain are responsive to central cholinergic activation of not only cyclic GMP, but also cyclic AMP system.  相似文献   

6.
Apart from controlling energy balance, leptin, a peptide hormone secreted by white adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have documented that leptin stimulates natriuresis and nitric oxide (NO) production, but the mechanism of these effects is incompletely elucidated. We examined whether phosphoinositide 3-kinase (PI3K) and its downstream effector, protein kinase B/Akt are involved in acute natriuretic and NO-mimetic effects of leptin in anaesthetized rats. Leptin (1 mg/kg i.v.) induced a marked increase in natriuresis and this effect was abolished by pretreatment with either wortmannin (15 μg/kg) or LY294002 (0.6 mg/kg), two structurally different PI3K inhibitors. Moreover, leptin increased plasma concentration and urinary excretion of NO metabolites, nitrites + nitrates (NOx), and of NO second messenger, cyclic GMP. In addition, leptin increased NOx and cGMP in aortic tissue. The stimulatory effect of leptin on NOx and cGMP was prevented by PKB/Akt inhibitor, triciribine, but not by either wortmannin or LY294002. Triciribine had no effect on leptin-induced natriuresis. Leptin stimulated Akt phosphorylation at Ser473 in aortic tissue but not in the kidney. These results suggest that leptin-induced natriuresis is mediated by PI3K but not Akt, whereas NO-mimetic effect of leptin results from PI3K-independent stimulation of Akt.  相似文献   

7.
The influence of gamma-hydroxybutyrate (GHB; 10, 50 or 100 mg/kg orally) and of its receptor antagonist, NCS-382 (25, 100 or 200 mg/kg orally, and 100 or 200 mg/kg intraperitoneally), on gastric emptying was studied in rats by measuring the serum level of acetaminophen (20 mg/rat orally, 30 min after GHB or NCS-382) 15, 30, 45 and 60 min after acetaminophen administration, or the amount of acetaminophen still present in the stomach 30 min after its administration. The highest dose of GHB produced a significant increase in 15 and 30 min serum levels of acetaminophen, indicating an acceleration of gastric emptying. A similar result was obtained with the prokinetic drug cisapride, at the oral dose of 2 mg/kg. On the other hand, NCS-382 significantly and dose-dependently reduced the serum levels of acetaminophen at every time of blood sampling, indicating a delay of gastric emptying, an effect confirmed by the amount of acetaminophen still present in the stomach 30 min after administration. Moreover, NCS-382 antagonized the prokinetic effect of GHB. These results may suggest for GHB (and/or possibly for its metabolites) a role in rat stomach motility.  相似文献   

8.
Dibutyryl cyclic GMP (Bu2cGMP) inhibited agonist-induced secretion of amylase from isolated rat pancreatic acini. In contrast to previous studies, this inhibitory action was not confined to butyryl derivatives of cyclic GMP, since the membrane-permeant cyclic GMP analogues Bu2cGMP and cyclic 8-bromo-GMP (8-Br-cGMP) were equipotent (IC50 2 nM) in their inhibition of amylase secretion stimulated by cholecystokinin-(26-33)-octapeptide (CCK8): at extracellular concentrations up to 1 mM, cyclic GMP itself was devoid of inhibitory activity. Both Bu2cGMP and 8-Br-cGMP also potently inhibited secretion stimulated by 4 beta-phorbol 12-myristate 13-acetate (PMA) (IC50 6 nM), but only partially inhibited responses elicited by bethanechol or bombesin and were without effect on A23187-evoked secretion. Furthermore, agents that are known to raise intracellular cyclic GMP levels (MB22948 (2-o-propoxyphenyl-8-azapurin-6-one) or nitroprusside) or antagonize the actions of protein kinase C (4 alpha-PMA or staurosporine), also inhibited CCK8- or PMA-stimulated secretion but not secretion elicited by bombesin, bethanechol, or A23187. It is concluded from these and other observations reported here that protein kinase C is the major intracellular mediator of amylase secretion stimulated by CCK8 and that this pathway may be regulated by cyclic GMP at a step that follows protein kinase C activation.  相似文献   

9.
The involvement of cGMP in the regulation of the flowering of Pharbitis nil was investigated through exogenous applications of cGMP and chemicals that are able to change the cGMP level and analyses of endogenous cGMP level. Exogenous applications of cGMP and 8-pCPT-cGMP (a cyclic GMP non hydrolyzed analog) to P. nil plants, which were exposed to a 12-h-long subinductive night, significantly increased flowering response. NS-2028 (guanylyl cyclase inhibitor) inhibited flowering when that compound was applied during a 16-h-long inductive night, whereas SNP (guanylyl cyclase activator) increased the flowering when plants were subjected to a 12-h-long subinductive night. The inhibitors of cyclic nucleotides phosphodiesterase (isobutyl-methylxanthine and dipyridamole), which increase the cytosolic cGMP level, promoted the flowering and allowed the length of the dark period necessary for induction of flowering to be reduced. The endogenous cGMP level was also measured after the treatment of P. nil seedlings with those chemicals. Results have clearly shown that compounds that were used in physiological experiments modulated endogenous cGMP level. There was a significant difference in the cyclic GMP level between 16-h-long night conditions and a long night with a night-break. During a long inductive night the oscillation of cGMP was observed with four main peaks in 4, 7, 11, 14 h, whereas a 10 min flash of red light in the middle of the night was able to modify these rhythmical changes in the second half of the long night. These results have shown that there are oscillations in the concentration of cGMP in the night and the biosynthesis and/or deactivation of cGMP is affected by light treatment and therefore it may be involved in the regulation of photoinduction processes in cotyledons. From these combined results, we propose a hypothesis that cGMP is involved in the control of photoperiodic flower induction in Pharbitis nil.  相似文献   

10.
The effects of isoproterenol, acetylcholine (Ach), and adenosine, on cyclic AMP (cAMP) and cyclic GMP (cGMP) contents were examined in chick hearts at various stages of embryonic development. The basal cAMP content was highest (87.7 +/- 1.3 pmol/mg protein) in young (3-day) embryonic chick hearts and decreased during development (9.6 +/- 0.6 pmol/mg protein in 9-19-day-old hearts). On the other hand, the cGMP content was lowest (45.5 +/- 2.3 fmol/mg protein) in young (3-day) embryonic chick hearts and increased during development (338 +/- 15.0 fmol/mg protein in 14-19-day-old hearts). Iso increased the cAMP concentration in embryonic hearts at all ages. Ach and Ado had no effect on the cAMP content at all ages. However, the Isoproterenol-induced stimulation of cAMP was inhibited by Ach and Adenosine at all ages. In young embryonic hearts, Ach and Ado increased cGMP concentration only slightly, whereas these agents caused a substantial increase in cGMP concentration in the older hearts. Thus, there was a clear age difference in the effects of Ach and Adenosine on the cGMP and cAMP concentrations. Nitroprusside and hydrogen peroxide increased cGMP concentration in older hearts (greater than 5-day-old) but not in the 3-day-old embryonic hearts. Thus, guanylate cyclase activity may be low in young (3-day-old) hearts. It summary, the cGMP level is very low in young embryonic chick hearts, and increases markedly during development. The changes in cGMP are reciprocal to those of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The aim of this study was to examine the effect of atrial natriuretic peptides on primary cultures of ependymal cells, as measured by changes in intracellular levels of cyclic GMP. Incubation of ependymal cells with rat atrial natriuretic peptide-(1-28) (rANP) elicited a 30-fold increase in ependymal cGMP content within 1 min and more than a 100-fold increase within 10 min to a plateau value of approximately 30 pmol/mg protein. The C-type natriuretic peptide (CNP) elicited a similar increase in cGMP levels; however the maximal effect was observed within 1 min and the levels subsequently dropped by 90% to a low plateau within 10 min. A comparison of the concentration-response curves for rANP, human ANP-(1-28) (hANP) and CNP showed that rANP, hANP and CNP had similar effects, with regards to elevation of cGMP levels at high concentrations, but with differing EC50 values. These results demonstrate the presence of a heterogenous population of functional ANP receptors in cultured ependymal cells suggesting that ANP may regulate specific ependymal cell activity.  相似文献   

13.
Bladder outlet obstruction (BOO) is a common disorder that is associated with altered bladder structure and function. For example, it is well established that BOO results in hypertrophy and hyperplasia of the bladder smooth muscle as well as detrusor instability. Since prostaglandins (PGs) and cyclic nucleotides (cyclic AMP [cAMP] and cyclic GMP [cGMP]) mediate both smooth muscle tone and proliferation, it is reasonable to suggest that changes in their levels may be involved in the pathophysiology of BOO-associated bladder disorders. Hence, the objective of this study was to investigate cyclic AMP, cyclic GMP and prostaglandins in the bladder of a rabbit model of BOO. BOO was induced in adult male New Zealand White rabbits. After 3 weeks, urinary bladders were excised, weighed and cut into segments. They were then incubated with stimulators of PGs, cAMP and cGMP and the formation of PGs, cAMP and cGMP were measured using radioimmunoassays. There was a significant increase in the obstructed bladder weights (P=0.002). The formation of PGE2, PGI2, cAMP and cGMP was significantly diminished in the detrusor (P<0.05) and bladder neck (P<0.05) in the BOO bladders compared to age-matched controls. Since PGE2, PGI2, cAMP and cGMP are known to inhibit the proliferation of smooth muscle cells (SMCs), the decreased synthesis of these factors, in BOO, may play a role in bladder SMC hypertrophy/hyperplasia. Our study points to the possible use of drugs that modulate the NO-cGMP and/or PG-cAMP axes in BOO-associated bladder pathology.  相似文献   

14.
The concentrations of cyclic AMP and cyclic GMP in the mouse cerebellum after intracerebroventricular administration of a range of doses of IPTBO have been studied with particular interest in the temporal changes after injection. A non typical dose relationship was observed. After the lowest and non-convulsive dose used (0.06 μg/animal) cyclic AMP levels decreased and cyclic GMP levels increased within 1 min, but after higher doses cyclic AMP and cyclic GMP levels were both raised. At three different convulsive doses of IPTBO there were increased levels of cyclic AMP with time which were more apparent in convulsing animals. Raised levels of cyclic GMP however, were not so influenced by convulsions. The results suggest that (1) the immediate decrease in cyclic AMP and the immediate increase in cyclic GMP may play a part in the mechanism of action of IPTBO—possibly by triggering convulsions and (2) there is an increase in cyclic AMP in response to, or because of, the convulsions. It is concluded that time after treatment and time into convulsions are critical when studying cyclic nucleotide changes, particularly for cyclic AMP and that such factors may explain conflicting observations with respect to this nucleotide.  相似文献   

15.
The Na-H antiporter of renal-brush border membranes is inhibited by cyclic AMP and stimulated by protein kinase C. The proximal tubule contains guanylate cyclase and is capable of cyclic GMP production. The effect of cGMP on renal Na-H antiporter activity was analyzed in phosphorylated brush border membranes by 22Na uptake in the presence or absence of 1 mM amiloride. 8-Bromo cyclic GMP (1 microM) increased the amiloride-sensitive 22Na uptake in control from 1.26 +/- 0.13 to 1.54 +/- 0.12 nmol/mg/protein/10 sec, P less than 0.01, without altering the amiloride-insensitive component. In the absence of exogenous ATP, cGMP also stimulated the amiloride-sensitive 22Na uptake, which can be explained by the presence of endogenous ATP in concentrations of up to 50 microM in the membranes. In ATP-depleted membrane vesicles, however, cGMP inhibited the amiloride-sensitive 22Na uptake. These data indicate that cGMP acts on the Na-H antiporter by at least two different mechanisms, one of which is ATP dependent. It is likely that cGMP-dependent protein kinase mediates the stimulatory effects seen in the presence of ATP, and the inhibition seen in ATP-depleted membranes results from cGMP direct action on the Na-H antiporter.  相似文献   

16.
Abstract— Muscarinic cholinergic agonists increase cyclic GMP levels in a number of neural tissues. Since the rat hippocampus receives a cholinergic innervation from the septum, we decided to test whether cyclic GMP levels of the rat hippocampus are increased by bethanechol, a muscarinic cholinergic agonist. Incubation of rat hippocampi with varying concentrations of bethanechol showed that the increase in cyclic GMP levels is concentration-dependent, 500 pwbethanechol producing a maximum increase of 490% over control values. The bethanechol-evoked increases were blocked by the muscarinic antagonist atropine, and were calcium-dependent. It is concluded that at least some of the cells projecting to the rat hippocampus form muscarinic cholinergic synapses which act via a cyclic GMP-dependent mechanism.  相似文献   

17.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

18.
The cyclic GMP concentration of dark-adapted rod outer segments (ROS) is approximately 30 pmoles/mg protein and only 3 pmoles/mg protein in ROS light-adapted in vivo or in vitro. The cyclic AMP concentration of dark-adapted ROS is about 2 pmoles/mg protein with no difference observed upon bleaching. A role for cyclic GMP in the visual process may thus be indicated.  相似文献   

19.
Bradykinin, which activates polymodal nociceptors, increased cyclic GMP (cGMP) in a capsaicin-sensitive population of cultured sensory neurones from rat dorsal root ganglia (DRG) by stimulating guanylate cyclase, but had no effect on cyclic AMP (cAMP). In nonneuronal cells from DRG, bradykinin increased cAMP, but not cGMP. The bradykinin-induced increase in cGMP in the neurones was completely blocked by removal of extracellular Ca2+, or by incubation of the cells with the calcium channel blockers nifedipine and verapamil. Pretreatment of the neurones with either dibutyryl cGMP or sodium nitroprusside (which elevates cGMP) inhibited bradykinin-induced formation of inositol phosphates. It is possible that cGMP could be involved in the regulation of polyphosphoinositide turnover in DRG neurones.  相似文献   

20.
The spectra of pharmacological effects of ethanol and the benzodiazepines show a degree of overlap. Neurophysiological and neurochemical evidence indicates that both ethanol and benzodiazepines facilitate inhibitory neurotransmission mediated by GABA. Diazepam has been reported to inhibit both the tremor and increase of cerebellar cyclic GMP caused by harmaline by a mechanism postulated to involve enhancement of GABA-mediated neurotransmission in the cerebellum. Because of the similarities between ethanol and benzodiazepines, the effects of ethanol on harmaline-induced tremor and increase of cerebellar cyclic GMP were studied. Ethanol inhibited harmaline-induced tremor at doses as low as 0.1 g/kg. At this low dose, however, a dissociation between inhibition of harmaline tremor and inhibition of the harmaline-induced increase of cerebellar cyclic GMP was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号