首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
比较了菠菜和蚕豆叶绿体的光合磷酸化活力以及由不同活化方法活化的叶绿体及可溶CF1的Mg^2+-ATPase和Ca^2+-ATPase的活力,观测到两种叶绿体ATPase的合成和水解ATP的功能有明显差异。从两种叶绿体CF1的SDS-PAGE图谱上可见蚕豆CF1的ε亚基分子量明显上于菠菜的,蚕豆CF1的α和β亚基间分子量的差别也比菠菜的小。  相似文献   

2.
编码蚕豆和玉米叶绿体ATP合酶ε亚基的atpE基因分别在大肠杆菌中获得了高效表达,两种表达的ε亚基蛋白在抑制CF1-ATP酶水解ATP、阻塞类囊体膜质子通道以及它促进光合磷酸化等方面均明显地强于蚕豆的ε亚基蛋白。该结果表明:(1)ε亚基对ATP合酶活性的调节作用与基同ATP合酶其他亚基间的亲和力大小密切相关;(2)ε亚基抑制CF1水解ATP和阻塞质子通道两个功能是呈正相关的。圆二色性(circul  相似文献   

3.
玉米叶绿体偶联因子ε亚基基因(atpE)被克隆到载体pJLA505和pWA的多聚接头处,形成重组质粒pJLA505-atpE和pWA-atpE,转化E.coli,并进行温敏诱导表达研究。在大肠杆菌中温敏诱导的基因表达产物经SDS-PAGE测定,表达量达全菌蛋白质的30%以上.Western-blot分析结果表明温敏诱导的表达产物可特异性地与ε亚基抗体反应,在免疫双扩散中也观察到沉淀线。大肠杆菌表达的玉米叶绿体atpE基因产物以包含体形式存在于细菌中。经对包含体处理后;获得的粗产物可达80%以上纯度,并具有天然ε亚基蛋白质的生物功能.  相似文献   

4.
用2μg/ml玉米素溶液预处理叶绿体或在光活化前于活化液中加入2μg/ml玉米素溶液,观察到玉米素能促进叶绿体膜上耦联因子DTT光活化Mg2+-ATPase及Mg2+GTPase的活力.且对GTPase的促进比例常较ATPase的大些。王米素对OG活化可溶性CF1Mg2+-ATPase活力同样表现出促进作用。用玉米素预处理CF1-β亚基(含微量CF1-α亚基)也观察到它能促进CF1-β亚基催化的Mg2+-ATPase活力。这些结果表明,玉米素在CF1上的作用部位至少有一个在β亚基或α.β亚基交界处调节其催化功能的。  相似文献   

5.
玉米叶绿体ATP合成酶ε亚基的定点突变   总被引:3,自引:0,他引:3  
利用突变引物和PCR方法对玉米叶绿体ATP合成酶的ε在进行定点突变,使ε亚基42位上的Thr分别替换成Cys、Arg、Ile和Pro。Thr变为Pro的ε亚基突变体不能表达,其他突变体与野生型一样,都能正常表达。Thr突变为Cys和Arg后,突变体对ATPase活力的抑制比野生型略高一些,但突变为Ile后,其抑制程度则极大地增强了。  相似文献   

6.
用2μg/ml玉米素溶液预处理叶绿体或在光活化前于活化液中加入2μg/ml玉米素溶液,观察到玉米素能促进叶绿体膜上耦联因子DTT光活化Mg^2+-ATPase及Mg^2+-GTPase的活力,且对GTPase的促进比例常较ATPase的大些。玉米素对OG活化可溶性CF1Mg^2+-ATPase活力同样表现出促进作用。用玉米素预处理CF1-β亚基(含微量CF1-α亚基)也观察到它促进CF1-β亚基催  相似文献   

7.
蚯蚓体内一种纤溶酶原激活剂(e-PA)对ATEE的降解   总被引:3,自引:0,他引:3  
赤子爱胜蚓(Eiseniafetida)体内的一种纤溶酶原激活剂(e-PA)能够降解人工合成底物N-乙酰-L-酪氨酸乙酯(ATEE),该降解反应的最适pH为8.5,而且在0.2mol/LNa2HPO4中的活性要强于在0.05mol/LTris-HCl(pH8.5)中.分别测定了e-PA的大小亚基及全酶在0.2mol/LNa2HPO4与0.05mol/LTris-HCl(pH8.5)两种体系中的Km和Kcat.结果表明,在0.2mol/LNa2HPO4中,全酶的ATEE活性远远高于大小亚基单独的ATEE活性,而在0.05mol/LTris-HCl(pH8.5)中则没有这种现象.从蛋白质结构的角度对这一结果作了解释.用不同抑制剂和e-PA作用,结果表明,pepstatin,E-64和EDTA对e-PA的ATEE活性都有不同程度的抑制,这一点与e-PA的BAEE活性不同.  相似文献   

8.
蚯蚓体内一种纤溶酶原激活剂(e-PA)对BAEE的降解   总被引:2,自引:0,他引:2  
以苯甲酰-L-精氨酸乙酯(benzoyl-L-arginineethylester,BAEE)为底物,研究了蚯蚓体内纤溶酶原激活剂(plasminogenactivatorfromEiseniafetida,e-PA)的酶学性质.酶促反应的最适pH为8.4,e-PA降解BAEE的Km为1.24±0.16×10-5mol/L,Kcat为13.80±4.02s-1.测定了构成e-PA的大,小亚基分别降解BAEE的Km和Kcat.结果表明,大亚基的Km与全酶的Km相差不多,但比小亚基小约10倍,即对底物的亲和力比小亚基强约一个数量级.大小亚基的Kcat比较接近,分别是全酶的1/6和1/3.研究了8种抑制剂对e-PA降解BAEE活性的影响,其中pepstatin和E-64(一种巯基抑制剂)对酶促反应有激活作用,TPCK,TL-CK,PMSF,chymostatin和leupeptin对其有不同程度的抑制作用,EDTA对e-PA的活性没有影响.对e-PA的BAEE活性和e-PA的纤溶活性之间作了比较.  相似文献   

9.
豆薯(Pachyrrhizuserosus)种子经磷酸盐缓冲液抽提,S-SepharoseFastFlow柱,DE-52纤维素柱和SephadexG-75柱层析,提取出两种高纯度的蛋白成分,命名为PachyrinⅠ和Ⅱ.SDS-PAGE测得其分子量分别为33kD和14.5kD,但HPLC分子筛的结果显示PachyrinⅡ的分子量为28kD,无论在还原条件下,还是在非还原条件下,PachyrinⅡ电泳的结果都完全相同,表明该蛋白的亚基不是以二硫键相连。两种蛋白的等电点分别为4.5和6.5.用酸解法测定了它们的氨基酸组成。在无细胞体系中,它们对蛋白合成有较弱的抑制活性,显示它们可能是核糖体失活蛋白(RIPs)家族中的新成员。  相似文献   

10.
100nmol/L佛波酯(12-O-tetradecanoylphobol13-acetate,TPA)作用于NIH3T3细胞24h,流式细胞仪检测到细胞表面整合蛋白α5亚基含量增加52.3%.Northern杂交方法测定结果亦表明整合蛋白α5亚基mRNA量增加,于2h时达到高峰,为对照的4.14倍.蛋白激酶C(proteinkinaseC,PKC)的活性增加趋势与之基本一致.运用PKC的抑制剂鞘氨醇(sphingo-sine)和酷氨酸激酶(tyrosinekinase,TK)抑制剂4,5,7-三羟基异黄酮(genestein)进一步研究,发现两者均可抑制佛波酯对整合蛋白α5亚基表达的上调作用.提示佛波酯对NIH3T3细胞整合蛋白α5亚基表达的调控与PKC和TK均有关.  相似文献   

11.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

12.
Trypsin treatment of spinach chloroplast thylakoids in the light but not in the dark, results in a highly active Mg2+-ATPase and an uncoupling of photophosphorylation. These light-dependent effects are due to a modification of coupling factor 1 (CF1). CF1 purified from thylakoids treated with trypsin in the light contained a clipped beta subunit and a partially clipped gamma subunit, whereas that from thylakoids treated in the dark with trypsin contained only the clipped beta subunit. CF1 containing this modified gamma subunit also retained a high level of Ca2+-ATPase activity in solution. These results suggest that the gamma subunit becomes highly sensitive to trypsin only when the CF1 is in an active conformation. A similar hypersensitivity to proteases of the gamma subunit in highly purified CF1 is seen only after the enzyme is activated (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5910-5914). The conversion of the enzyme to its active form, both on the membrane and in solution, therefore, seems to involve conformational changes that expose the gamma subunit to proteolysis.  相似文献   

13.
F0F1-ATP synthases catalyse ATP formation from ADP and Pi by using the free energy supplied by the transmembrane electrochemical potential of the proton. The delta subunit of F1 plays an important role at the interface between the channel portion F0 and the catalytic portion F1. In chloroplasts it can plug the protonic conductance of CF0 and in Escherichia coli it is required for binding of EF1 to EF0. We wanted to know whether or not delta of one species was effective between F0 and F1 of the other species and vice versa. To this end the respective coupling membrane (thylakoids, everted vesicles from E. coli) was (partially) depleted of F1 and purified F1, F1(-delta), and delta were added in various combinations to the F1-depleted membranes. The efficiency or reconstitution was measured in thylakoids via the rate of phenazinemethosulfate-mediated cyclic photophosphorylation and in E. coli everted vesicles via the degree of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching. Addition of CF1 to partially CF1-depleted thylakoid vesicles restored photophosphorylation to the highest extent. CF1(-delta)+chloroplast delta, EF1, EF1(-delta)+E. coli delta were also effective but to lesser extent. CF1(-delta)+E. coli delta and EF1(-delta)+chloroplast delta restored photophosphorylation to a small but still significant extent. With F1-depleted everted vesicles prepared by repeated EDTA treatment of E. coli membranes, addition of CF1, CF1 (-delta)+chloroplast delta and CF1(-delta)+E. coli delta gave approximately half the extent of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching as compared to EF1 or EF1(-delta)+E. coli delta by energization of the vesicles with NADH, while Ef1(-delta)+chloroplast delta was ineffective. All 'mixed' combinations were probably reconstitutively active only by plugging the protonic leak through the exposed F0 (structural reconstitution) rather than by catalytic activity. Nevertheless, the cross-reconstitution is stunning in view of the weak sequence similarity between chloroplast delta and E. coli delta. It favors a role of delta as a conformational transducer rather than as a proton conductor between F0 and F1.  相似文献   

14.
In leaves and intact chloroplasts, oxidation and reduction have been shown previously to regulate the ATPase activity of thylakoids. Illumination of spinach chloroplast thylakoids in the presence of dithiothreitol, which activates the ability of thylakoids to catalyze sustained ATP hydrolysis in the dark, causes increased incorporation of N-ethylmaleimide into the gamma subunit of coupling factor 1 (CF1). A disulfide bond in the gamma subunit is reduced during activation. The residues involved in this disulfide bond are the same as those in the disulfide linkage reduced during dithiothreitol activation of soluble CF1. The disulfide and dithiol forms of the gamma subunit may be separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. N-Ethylmaleimide is preferentially incorporated in the dark into the reduced form of the gamma subunit of CF1 in thylakoids previously exposed to dithiothreitol. Only a subpopulation of the CF1 in thylakoids is susceptible to dithiothreitol reduction and subsequent reaction with N-ethylmaleimide in the dark. Alkylation of the thiol groups exposed by reduction of the disulfide bond protects ATPase activity from inhibition by oxidants. At a given value of the transmembrane pH differential, photophosphorylation rates in dithiothreitol-activated thylakoids can be as much as seven to eight times those of nonactivated controls. N-Ethylmaleimide treatment of activated thylakoids in the dark prevents the loss of the stimulation of ATP synthesis on storage of the thylakoids. Photophosphorylation by intact chloroplasts lysed in assay mixtures is also activated in comparison to that by washed thylakoids. At a low ADP concentration, the rate of photophosphorylation approaches saturation as delta pH increases. These results suggest that the gamma subunit of CF1 plays an important role in regulation of ATP synthesis and hydrolysis.  相似文献   

15.
A chloroplast ATP synthase complex (CF1 [chloroplast-coupling factor 1]-CF0 [membrane-spanning portion of chloroplast ATP synthase]) depleted of all CF0 subunits except subunit III (also known as the proteolipid subunit) was purified to study the interaction between CF1 and subunit III. Subunit III has a putative role in proton translocation across the thylakoid membrane during photophosphorylation; therefore, an accurate model of subunit inter-actions involving subunit III will be valuable for elucidating the mechanism and regulation of energy coupling. Purification of the complex from a crude CF1-CF0 preparation from spinach (Spinacia oleracea) thylakoids was accomplished by detergent treatment during anion-exchange chromatography. Subunit III in the complex was positively identified by amino acid analysis and N-terminal sequencing. The association of subunit III with CF1 was verified by linear sucrose gradient centrifugation, immunoprecipitation, and incorporation of the complex into asolectin liposomes. After incorporation into liposomes, CF1 was removed from the CF1-III complex by ethylenediaminetetracetate treatment. The subunit III-proteoliposomes were competent to rebind purified CF1. These results indicate that subunit III directly interacts with CF1 in spinach thylakoids.  相似文献   

16.
In this work, we studied theoretically the effects of diffusion restrictions and topological factors that could influence the efficiency of energy coupling in the heterogeneous lamellar system of higher plant chloroplasts. Our computations are based on a mathematical model for electron and proton transport in chloroplasts coupled to ATP synthesis in chloroplasts that takes into account the nonuniform distribution of electron transport and ATP synthase complexes in the thylakoids of grana and stroma. Numerical experiments allowed the lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids to be simulated under different metabolic conditions (in the state of photosynthetic control and under conditions of photophosphorylation). This model also provided an opportunity to simulate the effects of steric constraints (the extent of appression of thylakoids in grana) on the rates of non-cyclic electron transport and ATP synthesis. This model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: 1) slowing down of non-cyclic electron transport due to a decrease in the intra-thylakoid pH, and 2) retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana. Numerical experiments for model systems that differ with respect to the arrangement of thylakoids in grana allowed the effects of osmolarity on the photophosphorylation rate in chloroplasts to be explained.  相似文献   

17.
Upon EDTA treatment thylakoids lose the chloroplast coupling factor 1 (CF1) part of their ATP synthase, CF0CF1, this exposes the proton channel, CF0. The previously established ability of the CF1 subunit delta to block the proton leak through CF0 prompted us to study (a) the ability of complete CF1 and, for comparison, CF1 lacking the delta subunit to block proton leakage and thereby to reconstitute structurally some photophosphorylation activity of the remaining CF0CF1 molecules and (b) their ability to form functional enzymes (functional reconstitution). In order to discriminate between activities caused by added CF1 or CF1(-delta) and remaining CF0CF1, the former were inhibited by chemical modification of subunit beta by N,N'-dicyclohexyl carbodiimide (DCCD) and the latter by tentoxin. We found that added CF1 acted both structurally and functionally while added DCCD-treated CF1 (DCCD-CF1) acted only structurally. In contrast to previous observations, CF1(-delta) and DCCD-CF1(-delta) also acted structurally although the reduction of proton leakage was smaller than with DCCD-CF1. Hence there was no functional reconstitution without subunit delta present. Previous studies indicated that only a small fraction of exposed CF0 is highly conducting and that this small fraction is distinguished by its high affinity for added CF1. The results of this study point rather to a wider distribution of CF0 conductance states and binding affinities.  相似文献   

18.
N-(1-Anilinonaphthyl-4)maleimide (ANM) has been used to modify coupling factor 1 (CF1), the terminal coupling factor of photophosphorylation in chloroplasts. As with other monofunctional maleimides, incubation of thylakoids with ANM in the light, but not in the dark, causes energy transfer inhibition of photophosphorylation. In the dark, sites on both the gamma and epsilon subunits of CF1 are modified. The light-accessible site is also on the gamma subunit. Trypsin digestion of the enzyme after dithiothreitol activation reveals that the dark-and light-accessible sites on the gamma subunit are different amino acid residues. Fluorescence of ANM bound at the dark-and light-accessible sites has been measured after isolation of CF1 from thylakoids. The fluorescence emission maximum of ANM at the light-accessible site is blue-shifted and the quantum yield is increased 2-fold relative to ANM bound at dark-accessible sites. On the soluble enzyme, fluorescence polarization is high and equivalent for ANM bound at both dark-and light-accessible sites. Fluorescence energy transfer from a tryptophan in a hydrophilic region of the epsilon subunit to ANM bound to the epsilon subunit but not to the gamma subunit has been observed. The significance of these observations is discussed with respect to the structure of the gamma subunit and its role in conformational transitions within CF1 that occur during energization of the membrane.  相似文献   

19.
Venturicidin inhibits the F0 portion of membrane-located, H+-pumping ATPases. We find it meets the criteria for an energy transfer inhibitor for spinach (Spinacia oleracea) thylakoids: complete inhibition of photophosphorylation and of photophosphorylation-stimulated and basal electron flow rates, but not of electron flow under uncoupled conditions. The extent of H+ uptake in the light is stimulated by venturicidin (vtcd), as expected for a compound blocking H+ efflux through CF0. Vtcd had no effect on the nonproton pumping, methanol-stimulated ATPase of thylakoids or on soluble CF1 ATPase. Under totally uncoupled conditions (saturating NH4Cl + gramicidin), vtcd can still inhibit sulfite-stimulated thylakoid ATPase completely. The concentration of vtcd needed for inhibition of ATPase was proportional to the concentration of thylakoids present in the assay, with an apparent stoichiometry of about 10 vtcd molecules per CF1/CF0 for 50% inhibition. Vtcd raised the Km for ATP somewhat, but had a stronger effect on the Vmax with respect to ATP. Inhibition by saturating vtcd ranged from 50 to 100%, depending on the condition of the thylakoids. Grinding leaves in buffer containing 0.2 M choline chloride (known to provide superior photophosphorylation rates) helped bring on maximum vtcd inhibition; trypsin treatment or aging of thylakoids brought on vtcd-resistant ATPase. We conclude that the extent of inhibition by vtcd can be used as an indicator of the tightness of coupling between CF1 and CF0.  相似文献   

20.
The reaction center-binding D1 protein of Photosystem II is oxidatively damaged by excessive visible light or moderate heat stress. The metalloprotease FtsH has been suggested as responsible for the degradation of the D1 protein. We have analyzed the distribution and subunit structures of FtsH in spinach thylakoids and various membrane fractions derived from the thylakoids using clear native polyacrylamide gel electrophoresis and Western blot analysis. FtsH was found not only in the stroma thylakoids but also in the Photosystem II-enriched grana membranes. Monomeric, dimeric, and hexameric FtsH proteases were present as major subunit structures in thylakoids, whereas only hexameric FtsH proteases were detected in Triton X-100-solubilized Photosystem II membranes. Importantly, among the membrane fractions examined, hexameric FtsH proteases were most abundant in the Photosystem II membranes. In accordance with this finding, D1 degradation took place in the Photosystem II membranes under light stress. Sucrose density gradient centrifugation analysis of thylakoids and the Photosystem II membranes solubilized with n-dodecyl-β-d-maltoside and a chemical cross-linking study of thylakoids showed localization of FtsH near the Photosystem II light-harvesting chlorophyll-protein supercomplexes in the grana. These results suggest that part of the FtsH hexamers are juxtapositioned to PSII complexes in the grana in darkness, carrying out immediate degradation of the photodamaged D1 protein under light stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号