首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spindle checkpoint delays the onset of anaphase until all pairs of sister chromatids are attached to the mitotic spindle. The checkpoint could monitor the attachment of microtubules to kinetochores, the tension that results from the two sister chromatids attaching to opposite spindle poles, or both. We tested the role of tension by allowing cells to enter mitosis without a prior round of DNA replication. The unreplicated chromatids are attached to spindle microtubules but are not under tension since they lack a sister chromatid that could attach to the opposite pole. Because the spindle checkpoint is activated in these cells, we conclude that the absence of tension at the yeast kinetochore is sufficient to activate the spindle checkpoint in mitosis.  相似文献   

2.
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.  相似文献   

3.
The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B-independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B-mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.  相似文献   

4.
The spindle checkpoint ensures that newly born cells receive one copy of each chromosome by preventing chromosomes from segregating until they are all correctly attached to the spindle. The checkpoint monitors tension to distinguish between correctly aligned chromosomes and those with both sisters attached to the same spindle pole. Tension arises when sister kinetochores attach to and are pulled toward opposite poles, stretching the chromatin around centromeres and elongating kinetochores. We distinguished between two hypotheses for where the checkpoint monitors tension: between the kinetochores, by detecting alterations in the distance between them, or by responding to changes in the structure of the kinetochore itself. To distinguish these models, we inhibited chromatin stretch by tethering sister chromatids together by binding a tetrameric form of the Lac repressor to arrays of the Lac operator located on either side of a centromere. Inhibiting chromatin stretch did not activate the spindle checkpoint; these cells entered anaphase at the same time as control cells that express a dimeric version of the Lac repressor, which cannot cross link chromatids, and cells whose checkpoint has been inactivated. There is no dominant checkpoint inhibition when sister kinetochores are held together: cells expressing the tetrameric Lac repressor still arrest in response to microtubule-depolymerizing drugs. Tethering chromatids together does not disrupt kinetochore function; chromosomes are successfully segregated to opposite poles of the spindle. Our results indicate that the spindle checkpoint does not monitor inter-kinetochore separation, thus supporting the hypothesis that tension is measured within the kinetochore.  相似文献   

5.
Jin F  Liu H  Li P  Yu HG  Wang Y 《PLoS genetics》2012,8(2):e1002492
The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments.  相似文献   

6.
Segregation of sister chromatids to opposite spindle poles during anaphase is dependent on the prior capture of sister kinetochores by microtubules extending from opposite spindle poles (bi-orientation). If sister kinetochores attach to microtubules from the same pole (syntelic attachment), the kinetochore-spindle pole connections must be re-oriented to be converted to proper bi-orientation. This re-orientation is facilitated by Aurora B kinase (Ipl1 in budding yeast), which eliminates kinetochore-spindle pole connections that do not generate tension. Mps1 is another evolutionarily conserved protein kinase, required for spindle-assembly checkpoint and, in some organisms, for duplication of microtubule-organizing centers. Separately from these functions, however, Mps1 has an important role in chromosome segregation. Here we show that, in budding yeast, Mps1 has a crucial role in establishing sister-kinetochore bi-orientation on the mitotic spindle. Failure in bi-orientation with inactive Mps1 is not due to a lack of kinetochore-spindle pole connections by microtubules, but due to a defect in properly orienting the connections. Mps1 promotes re-orientation of kinetochore-spindle pole connections and eliminates those that do not generate tension between sister kinetochores. We did not find evidence that Ipl1 regulates Mps1 or vice versa; therefore, they play similar, but possibly independent, roles in facilitating bi-orientation.  相似文献   

7.
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.  相似文献   

8.
How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.  相似文献   

9.
Accurate chromosome segregation depends on the proper attachment of sister kinetochores to microtubules emanating from opposite spindle poles. Merotelic kinetochore orientation is an error in which a single kinetochore is attached to microtubules emanating from both spindle poles. Despite correction mechanisms, merotelically attached kinetochores can persist until anaphase, causing chromatids to lag on the mitotic spindle and hindering their timely segregation. Recent studies showing that merotelic kinetochore attachment represents a major mechanism of aneuploidy in mitotic cells and is the primary mechanism of chromosomal instability in cancer cells have underlined the importance of studying merotely. Here, we highlight recent progress in our understanding of how cells prevent and correct merotelic kinetochore attachments.  相似文献   

10.
Merotelic kinetochore attachment is a major source of aneuploidy in mammalian tissue cells in culture. Mammalian kinetochores typically have binding sites for about 20-25 kinetochore microtubules. In prometaphase, kinetochores become merotelic if they attach to microtubules from opposite poles rather than to just one pole as normally occurs. Merotelic attachments support chromosome bi-orientation and alignment near the metaphase plate and they are not detected by the mitotic spindle checkpoint. At anaphase onset, sister chromatids separate, but a chromatid with a merotelic kinetochore may not be segregated correctly, and may lag near the spindle equator because of pulling forces toward opposite poles, or move in the direction of the wrong pole. Correction mechanisms are important for preventing segregation errors. There are probably more than 100 times as many PtK1 tissue cells with merotelic kinetochores in early mitosis, and about 16 times as many entering anaphase as the 1% of cells with lagging chromosomes seen in late anaphase. The role of spindle mechanics and potential functions of the Ndc80/Nuf2 protein complex at the kinetochore/microtubule interface is discussed for two correction mechanisms: one that functions before anaphase to reduce the number of kinetochore microtubules to the wrong pole, and one that functions after anaphase onset to move merotelic kinetochores based on the ratio of kinetochore microtubules to the correct versus incorrect pole.  相似文献   

11.
Background information. In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi‐orientation). At the metaphase—anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule‐dependent forces. Results. We have studied the role of the minus‐end‐directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle‐assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2‐dependent spindle‐assembly checkpoint. Conclusions. These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi‐orientation during early mitosis.  相似文献   

12.
Tanaka TU 《Chromosoma》2008,117(6):521-533
To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite poles during mitosis. This process mainly depends on the forces generated by microtubules that attach to kinetochores. During prometaphase, kinetochores initially interact with a single microtubule that extends from a spindle pole and then move towards a spindle pole. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (sister kinetochore bi-orientation). If sister kinetochores interact with microtubules in wrong orientation, this must be corrected before the onset of anaphase. Here, I discuss the processes leading to bi-orientation and the mechanisms ensuring this pivotal state that is required for proper chromosome segregation.  相似文献   

13.
In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.  相似文献   

14.
For the proper segregation of sister chromatids before cell division, each sister kinetochore must attach to microtubules that extend to opposite spindle poles. This process is called bipolar microtubule attachment or chromosome bi-orientation. The mechanism for chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent studies suggest that cells can promote bi-orientation by re-orienting kinetochore-spindle pole connections.  相似文献   

15.
Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by the activity of the conserved mitotic kinase Aurora B/Ipl1, thereby promoting the formation of correctly attached chromosomes. Recruitment of the conserved centromeric protein shugoshin is essential for biorientation, but its exact role has been enigmatic. Here, we identify a novel function of shugoshin (Sgo1 in budding yeast) that together with the protein phosphatase PP2A-Rts1 ensures localization of condensin to the centromeric chromatin in yeast Saccharomyces cerevisiae. Failure to recruit condensin results in an abnormal conformation of the pericentric region and impairs the correction of tensionless chromosome attachments. Moreover, we found that shugoshin is required for maintaining Aurora B/Ipl1 localization on kinetochores during metaphase. Thus, shugoshin has a dual function in promoting biorientation in budding yeast: first, by its ability to facilitate condensin recruitment it modulates the conformation of the pericentric chromatin. Second, shugoshin contributes to the maintenance of Aurora B/Ipl1 at the kinetochore during gradual establishment of bipolarity in budding yeast mitosis. Our findings identify shugoshin as a versatile molecular adaptor that governs chromosome biorientation.  相似文献   

16.
Kinetochore capture and bi-orientation on the mitotic spindle   总被引:1,自引:0,他引:1  
Kinetochores are large protein complexes that are formed on chromosome regions known as centromeres. For high-fidelity chromosome segregation, kinetochores must be correctly captured on the mitotic spindle before anaphase onset. During prometaphase, kinetochores are initially captured by a single microtubule that extends from a spindle pole and are then transported poleward along the microtubule. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles - this is known as bi-orientation. Here we discuss the molecular mechanisms of these processes, by focusing on budding yeast and drawing comparisons with other organisms.  相似文献   

17.
For proper chromosome segregation, sister kinetochores must attach to microtubules extending from opposite spindle poles prior to anaphase onset. This state is called sister kinetochore bi-orientation or chromosome bi-orientation. The mechanism ensuring chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent evidence suggests that mal-oriented kinetochore-to-pole connections are corrected in a tension-dependent mechanism. The cohesin complex and the Ipl1/Aurora B protein kinase seem to be key regulators for this correction. In this article, I discuss how cells ensure sister kinetochore bi-orientation for all chromosomes, mainly focusing on our recent findings in budding yeast.  相似文献   

18.
BACKGROUND: Accurate chromosome segregation depends on the establishment of correct-amphitelic-kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. RESULTS: We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4(+), like that of pcs1(+), causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. CONCLUSIONS: We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.  相似文献   

19.
The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.  相似文献   

20.
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号