首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as "spacers" that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (> approximately 20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation.  相似文献   

2.
Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of the titin segments in skeletal muscle has been determined by immunofluorescence/immunoelectron microscopy of sarcomeres stained with sequence-assigned titin antibodies. The force developed upon stretch of titin has been measured on isolated molecules or recombinant titin fragments with the help of optical tweezers and the atomic force microscope. Force has also been measured in single isolated myofibrils. The force-extension relation of titin could be readily fitted with models of biopolymer elasticity. For physiologically relevant extensions, the elasticity of the titin segments was largely explainable by an entropic-spring mechanism. The modelling explains why during stretch of titin, the Ig-domain regions (with folded modules) extend before the PEVK domain. In cardiac muscle, I-band titin is expressed in different isoforms, termed N2-A and N2-B. The N2-A isoform resembles that of skeletal muscle, whereas N2-B titin is shorter and is distinguished by cardiac-specific Ig-motifs and nonmodular sequences within the central I-band section. Examination of N2-B titin extensibility revealed that this isoform extends by recruiting three distinct elastic elements: poly-Ig regions and the PEVK domain at lower stretch and, in addition, a unique 572-residue sequence insertion at higher physiological stretch. Extension of all three elements allows cardiac titin to stretch fully reversibly at physiological sarcomere lengths, without the need to unfold individual Ig domains. However, unfolding of a very small number of Ig domains remains a possibility.  相似文献   

3.
The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.  相似文献   

4.
Titin (also known as connectin) is an intrasarcomeric muscle protein that functions as a molecular spring and generates passive tension upon muscle stretch. The N2B element is a cardiac-specific spring element within titin's extensible region. Our goal was to study the contribution of the N2B element to the mechanical properties of titin, particularly its hypothesized role in limiting energy loss during repeated stretch (diastole)-shortening (systole) cycles of the heart. We studied energy loss by measuring hysteresis from the area between the stretch and release passive force-sarcomere length curves and used both wild-type (WT) mice and N2B knockout (KO) mice in which the N2B element has been deleted. A range of protocols was used, including those that mimic physiological loading conditions. KO mice showed significant increases in hysteresis. Most prominently, in tissue that had been preconditioned with a physiological stretch-release protocol, hysteresis increased significantly from 320 ± 46 pJ/mm2/sarcomere in WT to 650 ± 94 pJ/mm2/sarcomere in N2B KO myocardium. These results are supported by experiments in which oxidative stress was used to mechanically inactivate portions of the N2B-Us of WT titin through cysteine cross-linking. Studies on muscle from which the thin filaments had been extracted (using the actin severing protein gelsolin) showed that the difference in hysteresis between WT and KO tissue cannot be explained by filament sliding-based viscosity. Instead the results suggest that hysteresis arises from within titin and most likely involves unfolding of immunoglobulin-like domains. These studies support that the mechanical function of the N2B element of titin includes reducing hysteresis and increasing the efficiency of the heart.  相似文献   

5.
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.   总被引:3,自引:0,他引:3  
Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force-extension curves of the PEVK and N2B-Us spring elements, which together are responsible for physiological levels of passive force in moderately to highly stretched myocardium. Stretch-release force-extension curves of both the PEVK domain and N2B-Us displayed little hysteresis: the stretch and release data nearly overlapped. The force-extension curves closely followed worm-like chain behavior. Histograms of persistence length (measure of chain bending rigidity) indicated that the single molecule persistence lengths are approximately 1.4 and approximately 0.65 nm for the PEVK domain and N2B-Us, respectively. Using these mechanical characteristics and those determined earlier for the tandem Ig segment (assuming folded Ig domains), we modeled the cardiac titin extensible region in the sarcomere and calculated the extension of the various spring elements and the forces generated by titin, both as a function of sarcomere length. In the physiological sarcomere length range, predicted values and those obtained experimentally were indistinguishable.  相似文献   

6.
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.  相似文献   

7.
Titin is a giant elastic protein responsible for passive force generated by the stretched striated-muscle sarcomere. Passive force develops in titin's extensible region which consists of the PEVK segment in series with tandemly arranged immunoglobulin (Ig)-like domains. Here we studied the mechanics of tandem Ig segments from the differentially spliced (I65-70) and constitutive (I91-98) regions by using an atomic force microscope specialized for stretching single molecules. The mechanical stability of I65-70 domains was found to be different from that of I91-98 domains. In the range of stretch rates studied (0.05-1.00 microm/s) lower average domain unfolding forces for I65-70 were associated with a weaker stretch-rate dependence of the unfolding force, suggesting that the differences in the mechanical stabilities of the segments derive from differences in the zero force unfolding rate (K(0)(u)) and the characteristic distance (location of the barrier) along the unfolding reaction coordinate (DeltaX(u)). No effect of calcium was found on unfolding forces and persistence length of unfolded domains. To explore the structural basis of the differences in mechanical stabilities of the two fragment types, we compared the amino acid sequence of I65-70 domains with that of I91-98 domains and by using homology modeling analyzed how sequence variations may affect folding free energies. Simulations suggest that differences in domain stability are unlikely to be caused by variation in the number of hydrogen bonds between the force-bearing beta-strands at the domain's N- and C-termini. Rather, they may be due to differences in hydrophobic contacts and strand orientations.  相似文献   

8.
Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations.  相似文献   

9.
Titin is a structural protein in muscle that spans the half sarcomere from Z-band to M-line. Although there are selected studies on titin's mechanical properties from tests on isolated molecules or titin fragments, little is known about its behavior within the structural confines of a sarcomere. Here, we tested the hypothesis that titin properties might be reflected well in single myofibrils. Single myofibrils from rabbit psoas were prepared for measurement of passive stretch-shortening cycles at lengths where passive titin forces occur. Three repeat stretch-shortening cycles with magnitudes between 1.0 and 3.0μm/sarcomere were performed at a speed of 0.1μm/s·sarcomere and repeated after a ten minute rest at zero force. These tests were performed in a relaxation solution (passive) and an activation solution (active) where cross-bridge attachment was inhibited with 2,3 butanedionemonoxime. Myofibrils behaved viscoelastically producing an increased efficiency with repeat stretch-shortening cycles, but a decreased efficiency with increasing stretch magnitudes. Furthermore, we observed a first distinct inflection point in the force-elongation curve at an average sarcomere length of 3.5μm that was associated with an average force of 68±5nN/mm. This inflection point was thought to reflect the onset of Ig domain unfolding and was missing after a ten minute rest at zero force, suggesting a lack of spontaneous Ig domain refolding. These passive myofibrillar properties observed here are consistent with those observed in isolated titin molecules, suggesting that the mechanics of titin are well preserved in isolated myofibrils, and thus, can be studied readily in myofibrils, rather than in the extremely difficult and labile single titin preparations.  相似文献   

10.
Titin, the largest protein known to date, has been linked to sarcomere assembly and function through its elastic adaptor and signaling domains. Titin's M-line region contains a unique kinase domain that has been proposed to regulate sarcomere assembly via its substrate titin cap (T-cap). In this study, we use a titin M line-deficient mouse to show that the initial assembly of the sarcomere does not depend on titin's M-line region or the phosphorylation of T-cap by the titin kinase. Rather, titin's M-line region is required to form a continuous titin filament and to provide mechanical stability of the embryonic sarcomere. Even without titin integrating into the M band, sarcomeres show proper spacing and alignment of Z discs and M bands but fail to grow laterally and ultimately disassemble. The comparison of disassembly in the developing and mature knockout sarcomere suggests diverse functions for titin's M line in embryonic development and the adult heart that not only involve the differential expression of titin isoforms but also of titin-binding proteins.  相似文献   

11.
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble.  相似文献   

12.
Titin is the third most abundant protein in sarcomeres and fulfills a number of mechanical and signaling functions. Specifically, titin is responsible for most of the passive forces in sarcomeres and the passive visco-elastic behaviour of myofibrils and muscles. It has been suggested, based on mechanical testing of isolated titin molecules, that titin is an essentially elastic spring if Ig domain un/refolding is prevented either by working at short titin lengths, prior to any unfolding of Ig domains, or at long sarcomere (and titin) lengths when Ig domain un/refolding is effectively prevented. However, these properties of titin, and by extension of muscles, have not been tested with titin in its natural structural environment within a sarcomere. The purpose of this study was to gain insight into the Ig domain un/refolding kinetics and test the idea that titin could behave essentially elastically at any sarcomere length by preventing Ig domain un/refolding during passive stretch-shortening cycles. Although not completely successful, we demonstrate here that titin’s visco-elastic properties appear to depend on the Ig domain un/refolding kinetics and that indeed, titin (and thus myofibrils) can become virtually elastic when Ig domain un/refolding is prevented.  相似文献   

13.
Titin (also known as connectin) is a muscle-specific giant protein found inside the sarcomere, spanning from the Z-line to the M-line. The I-band segment of titin is considered to function as a molecular spring that develops tension when sarcomeres are stretched (passive tension). Recent studies on skeletal muscle indicate that it is not the entire I-band segment of titin that behaves as a spring; some sections are inelastic and do not take part in the development of passive tension. To better understand the mechanism of passive tension development in the heart, where passive tension plays an essential role in the pumping function, we investigated titin's elastic segment in cardiac myocytes using structural and mechanical techniques. Single cardiac myocytes were stretched by various amounts and then immunolabeled and processed for electron microscopy in the stretched state. Monoclonal antibodies that recognize different titin epitopes were used, and the locations of the titin epitopes in the sarcomere were studied as a function of sarcomere length. We found that only a small region of the I-band segment of titin is elastic; its contour length is estimated at approximately 75 nm, which is only approximately 40% of the total I-band segment of titin. Passive tension measurements indicated that the fundamental determinant of how much passive tension the heart develops is the strain of titin's elastic segment. Furthermore, we found evidence that in sarcomeres that are slack (length, approximately 1.85 microns) the elastic titin segment is highly folded on top of itself. Based on the data, we propose a two-stage mechanism of passive tension development in the heart, in which, between sarcomere lengths of approximately 1.85 microns and approximately 2.0 microns, titin's elastic segment straightens and, at lengths longer than approximately 2.0 microns, the molecular domains that make up titin's elastic segment unravel. Sarcomere shortening to lengths below slack (approximately 1.85 microns) also results in straightening of the elastic titin segment, giving rise to a force that opposes shortening and that tends to bring sarcomeres back to their slack length.  相似文献   

14.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

15.
Vertebrate striated muscle behaves elastically when stretched and this property is thought to reside primarily within the giant filamentous protein, titin (connectin). The elastic portion of titin comprises two distinct structural motifs, immunoglobulin (Ig) domains and the PEVK titin, which is a novel motif family rich in proline, glutamate, valine and lysine residues. The respective contributions of the titin Ig and the PEVK sequences to the elastic properties of the molecule have been unknown so far. We have measured both the passive tension in single, isolated myofibrils from cardiac and skeletal muscle and the stretch-induced translational movement of I-band titin antibody epitopes following immunofluorescent labelling of sites adjacent to the PEVK and Ig domain regions. We found that with myofibril stretch, I-band titin does not extend homogeneously. The Ig domain region lengthened predominantly during small stretch, but such lengthening did not result in measurable passive tension and might be explained by straightening, rather than by unfolding, of the Ig repeats. At moderate to extreme stretch, the main extensible region was found to be the PEVK segment whose unravelling was correlated with a steady passive tension increase. In turn, PEVK domain transition from a linearly extended to a folded state appears to be principally responsible for the elasticity of muscle fibers. Thus, the length of the PEVK sequence may determine the tissue-specificity of muscle stiffness, whereas the expression of different Ig domain motif lengths may set the characteristic slack sarcomere length of a muscle type.  相似文献   

16.
Abstract. Titin (also known as connectin) is a giant protein that spans half of the striated muscle sarcomere. In the I-band titin extends as the sarcomere is stretched, developing what is known as passive force. The I-band region of titin contains tandem Ig segments (consisting of serially linked immunoglobulin-like domains) with the unique PEVK segment in between (Labeit, S., and B. Kolmerer. 1995. Science. 270:293–296). Although the tandem Ig and PEVK segments have been proposed to behave as stiff and compliant springs, respectively, precise experimental testing of the hypothesis is still needed. Here, sequence-specific antibodies were used to mark the ends of the tandem Ig and PEVK segments. By following the extension of the segments as a function of sarcomere length (SL), their respective contributions to titin's elastic behavior were established. In slack sarcomeres (~2.0 μm) the tandem Ig and PEVK segments were contracted. Upon stretching sarcomeres from ~2.0 to 2.7 μm, the “contracted” tandem Ig segments straightened while their individual Ig domains remained folded. When sarcomeres were stretched beyond ~2.7 μm, the tandem Ig segments did not further extend, instead PEVK extension was now dominant. Modeling tandem Ig and PEVK segments as entropic springs with different bending rigidities (Kellermayer, M., S. Smith, H. Granzier, and C. Bustamante. 1997. Science. 276:1112–1116) indicated that in the physiological SL range (a) the Ig-like domains of the tandem Ig segments remain folded and (b) the PEVK segment behaves as a permanently unfolded polypeptide. Our model provides a molecular basis for the sequential extension of titin's different segments. Initially, the tandem Ig segments extend at low forces due to their high bending rigidity. Subsequently, extension of the PEVK segment occurs only upon reaching sufficiently high external forces due to its low bending rigidity. The serial linking of tandem Ig and PEVK segments with different bending rigidities provides a unique passive force–SL relation that is not achievable with a single elastic segment.  相似文献   

17.
In myocytes, small heat shock proteins (sHSPs) are preferentially translocated under stress to the sarcomeres. The functional implications of this translocation are poorly understood. We show here that HSP27 and αB-crystallin associated with immunoglobulin-like (Ig) domain-containing regions, but not the disordered PEVK domain (titin region rich in proline, glutamate, valine, and lysine), of the titin springs. In sarcomeres, sHSP binding to titin was actin filament independent and promoted by factors that increased titin Ig unfolding, including sarcomere stretch and the expression of stiff titin isoforms. Titin spring elements behaved predominantly as monomers in vitro. However, unfolded Ig segments aggregated, preferentially under acidic conditions, and αB-crystallin prevented this aggregation. Disordered regions did not aggregate. Promoting titin Ig unfolding in cardiomyocytes caused elevated stiffness under acidic stress, but HSP27 or αB-crystallin suppressed this stiffening. In diseased human muscle and heart, both sHSPs associated with the titin springs, in contrast to the cytosolic/Z-disk localization seen in healthy muscle/heart. We conclude that aggregation of unfolded titin Ig domains stiffens myocytes and that sHSPs translocate to these domains to prevent this aggregation.  相似文献   

18.
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.  相似文献   

19.
The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiffness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation. Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-like (Ig-)domains in titin's spring region have a potential for S-S formation. Using single-molecule atomic force microscopy (AFM) force-extension measurements on recombinant Ig-domain polyprotein constructs, we show that titin Ig-modules contain no stabilizing disulfide bridge, contrary to previous belief. However, we demonstrate that the human N2-B-unique sequence (N2-Bus), a cardiac-specific, physiologically extensible titin segment comprising 572 amino-acid residues, contains up to three disulfide bridges under oxidizing conditions. AFM force spectroscopy on recombinant N2-Bus molecules demonstrated a much shorter contour length in the absence of a reducing agent than in its presence, consistent with intramolecular S-S bonding. In stretch experiments on isolated human heart myofibrils, the reducing agent thioredoxin lowered titin-based stiffness to a degree that could be explained (using entropic elasticity theory) by altered extensibility solely of the N2-Bus. We conclude that increased oxidant stress can elevate titin-based stiffness of cardiomyocytes, which may contribute to the global myocardial stiffening frequently seen in the aging or failing heart.  相似文献   

20.
M Rief  M Gautel  A Schemmel    H E Gaub 《Biophysical journal》1998,75(6):3008-3014
The domains of the giant muscle protein titin (connectin) provide interaction sites for other sarcomeric proteins and fulfill mechanical functions. In this paper we compare the unfolding forces of defined regions of different titin isoforms by single-molecule force spectroscopy. Constructs comprising six to eight immunoglobulin (Ig) domains located in the mechanically active I-band part of titin are compared to those containing fibronectin III (Fn3) and Ig domains from the A-band part. The high spatial resolution of the atomic force microscope allows us to detect differences in length as low as a few amino acids. Thus constructs of different lengths may be used as molecular rulers for structural comparisons with other modular proteins. The unfolding forces range between 150 and 300 pN and differ systematically between the constructs. Fn3 domains in titin exhibit 20% lower unfolding forces than Ig domains. Fn3 domains from tenascin, however, unfold at forces only half those of titin Fn3 domains. This indicates that the tightly folded titin domains are designed to maintain their structural integrity, even under the influence of stretching forces. Hence, at physiological forces, unfolding is unlikely unless the forces are applied for a long time (longer than minutes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号