首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
K L Knight  R T Sauer 《Biochemistry》1988,27(6):2088-2094
A set of C-terminal deletion mutants of the Mnt repressor of bacteriophage P22 has been constructed, and the corresponding truncated proteins have been purified. A truncated protein lacking the three C-terminal residues, Lys80-Thr81-Thr82, binds operator DNA with an affinity near wild type and has a normal tetrameric structure. Loss of the next residue, Lys79, causes a 600-fold decrease in operator affinity, but the truncated protein is still tetrameric. Further sequential deletions of Tyr78 and Leu77 cause modest decreases in operator affinity, but the truncated proteins are now dimeric. These results indicate that Lys79 is an important determinant of the high affinity of Mnt repressor for operator DNA and that Tyr78 is an important determinant of tetramer formation by Mnt repressor.  相似文献   

2.
We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.  相似文献   

3.
The role of the streptokinase (SK) alpha-domain in plasminogen (Pg) and plasmin (Pm) interactions was investigated in quantitative binding studies employing active site fluorescein-labeled [Glu]Pg, [Lys]Pg, and [Lys]Pm, and the SK truncation mutants, SK-(55-414), SK-(70-414), and SK-(152-414). Lysine binding site (LBS)-dependent and -independent binding were resolved from the effects of the lysine analog, 6-aminohexanoic acid. The mutants bound indistinguishably, consistent with unfolding of the alpha-domain on deletion of SK-(1-54). The affinity of SK for [Glu]Pg was LBS-independent, and although [Lys]Pg affinity was enhanced 13-fold by LBS interactions, the LBS-independent free energy contributions were indistinguishable. alpha-Domain truncation reduced the affinity of SK for [Glu]Pg 2-7-fold and [Lys]Pg 相似文献   

4.
The human high affinity IgE receptor (FcepsilonRI) is a central component of the allergic response and is expressed as either a trimeric alphagamma2 or tetrameric alphabetagamma2 complex. It has been previously described that the cytoplasmic domain (CD) of the alpha-chain carries a dilysine motif at positions -3/-7 from the C terminus that functions in intracellular retention prior to assembly with other FcepsilonRI subunits. In this report we have further explored the role of the -3/-7 dilysine signal in controlling steady-state alpha-chain transport by mutational analysis and found little surface expression of a -3/-7 dialanine alpha-chain mutant but significant Golgi localization. We compared the transport properties of a series of alpha-chain cytoplasmic domain truncation mutants and observed that truncation mutants lacking 23 or more C-terminal residues showed a dramatic increase in steady-state transport suggesting a role for the membrane-proximal CD sequence in alpha-chain retention. By performing alanine-scanning mutagenesis we identified a dilysine sequence (Lys(212)-Lys(216)) proximal to the transmembrane domain (TMD) that is important for both alpha-chain cell-surface expression and intracellular stability. Furthermore, co-mutation of the Lys(212)-Lys(216) residues with the -3/-7 dilysine signal produced a dramatic increase in alpha-chain surface expression that was further increased by co-mutation of the lone charged residue (Asp(192)) in the TMD thereby defining three regions that function to regulate alpha-chain transport and in a highly synergistic manner.  相似文献   

5.
Little information is available on the C-terminal hydrophilic tails of prokaryotic Na(+)/H(+) antiporters. To address functional properties of the C-terminal tail, truncation mutants in this domain were constructed. Truncation of C-terminal amino acid residues of NhaP1 type antiporter from Synechocystis PCC6803 (SynNhaP1) did not change the V(max) values, but increased the K(m) values for Na(+) and Li(+) about 3 to 15-fold. Truncation of C-terminal tail of a halotolerant cyanobacterium Aphanothece halophytica (ApNhaP1) significantly decreased the V(max) although it did not alter the K(m) values for Na(+). The C-terminal part of SynNhaP1 was expressed in E. coli and purified as a 16kDa soluble protein. Addition of purified polypeptide to the membrane vesicles expressing the C-terminal truncated SynNhaP1 increased the exchange activities. Change of Glu519 and Glu521 to Lys in C-terminal tail altered the pH dependence of Na(+)/H(+) and Li(+)/H(+) exchange activities. These results indicate that the specific acidic amino acid residues at C-terminal domain play important roles for the K(m) and the pH dependence of the exchange activity.  相似文献   

6.
A glucose dehydrogenase gene was isolated from Bacillus megaterium IWG3, and its nucleotide sequence was identified. The amino acid sequence of the enzyme deduced from the nucleotide sequence is very similar to the protein sequence of the enzyme from B. megaterium M1286 reported by Jany et al. (Jany, K.-D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) FEBS Lett. 165, 6-10). The isolated gene was mutagenized with hydrazine, formic acid, or sodium nitrite, and 12 clones (H35, H39, F18, F20, F191, F192, N1, N13, N14, N28, N71, and N72) containing mutant genes for thermostable glucose dehydrogenase were obtained. The nucleotide sequences of the 12 genes show that they include 8 kinds of mutants having the following amino acid substitutions: H35 and H39, Glu-96 to Gly; F18 and F191, Glu-96 to Ala; F20, Gln-252 to Leu; F192, Gln-252 to Leu and Ala-258 to Gly; N1, Glu-96 to Lys and Val-183 to Ile; N13 and N14, Glu-96 to Lys, Val-112 to Ala, Glu-133 to Lys, and Tyr-217 to His; N28, Glu-96 to Lys, Asp-108 to Asn, Pro-194 to Gln, and Glu-210 to Lys; and N71 and N72, Tyr-253 to Cys. These mutant enzymes have higher stability at 60 degrees C than the wild-type enzyme. The results of this study indicate that the tetrameric structure of glucose dehydrogenase is stabilized by several kinds of mutation, and at least one of the following amino acid substitutions stabilizes the enzyme: Glu-96 to Gly, Glu-96 to Ala, Gln-252 to Leu, and Tyr-253 to Cys.  相似文献   

7.
Noack S  Michael N  Rosen R  Lamparter T 《Biochemistry》2007,46(13):4164-4176
Phytochromes are widely distributed photochromic biliprotein photoreceptors. Typical bacterial phytochromes such as Agrobacterium Agp1 have a C-terminal histidine kinase module; the N-terminal chromophore module induces conformational changes in the protein that lead to modulation of kinase activity. We show by protein cross-linking that the C-terminal histidine kinase module of Agp1 mediates stable dimerization. The fragment Agp1-M15, which comprises the chromophore module but lacks the histidine kinase module, can also form dimers. In this fragment, dimer formation was stronger for the far-red-absorbing form Pfr than for the red-absorbing form Pr. The same or similar behavior was found for Agp1-M15Delta9N and Agp1-M15Delta18N, which lack 9 and 18 amino acids of the N-terminus, respectively. The fragment Agp1-M20, which is derived from Agp1-M15 by truncation of the C-terminal "PHY domain" (191 amino acids), can also form dimers, but dimerization is independent of irradiation conditions. The cross-linking data also showed that the PHY domain is in tight contact with Lys 16 of the protein and that the nine N-terminal amino acids mediate oligomer formation. Limited proteolysis shows that the hinge region between the chromophore module and the histidine kinase and a part of the PHY domain become exposed upon Pr to Pfr photoconversion.  相似文献   

8.
Most of the actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mediated by binding to the Vitamin D nuclear receptor (VDR). The crystal structure of a deletion mutant (Delta165-215) of the VDR ligand-binding domain (LBD) bound to 1,25(OH)(2)D(3) indicates that amino acid residues tyrosine-143 and serine-278 form hydrogen bonding interactions with the 3-hydroxyl group of 1,25(OH)(2)D(3). Studies of VDR and three mutants (Y143F, S278A, and Y143F/S278A) did not indicate any differences in the binding affinity between the variant receptors and the wild-type receptor. This might indicate that the 3-hydroxyl group binds differently to the full-length VDR than the to deletion mutant. To further investigate, four deletion VDR mutants were constructed: VDR(Delta165-215), VDR(Delta165-215) (Y143F), VDR(Delta165-215) (S278A), VDR(Delta165-215) (Y143F/S278A). There were no significant differences in binding affinity between the wild-type receptor and the deletion mutants except for VDR(Delta165-215) (Y143F/S278A). In gene activation assays, VDR constructs with the single mutation Y143F and the double mutation Y143F/S278A, but not the single mutation S278A required higher doses of 1,25(OH)(2)D(3) for half-maximal response. This suggests that there are some minor structural and functional differences between the wild-type VDR and the Delta165-215 deletion mutant and that Y143 residue is more important for receptor function than residue S278.  相似文献   

9.
The enzymatic activity of coagulation factor VIIa is controlled by its cellular cofactor tissue factor (TF). TF binds factor VIIa with high affinity and, in addition, participates in substrate interaction through its C-terminal fibronectin type III domain. We analyzed surface-exposed residues in the C-terminal TF domain to more fully determine the area on TF important for substrate activation. Soluble TF (sTF) mutants were expressed in E. coli, and their ability to support factor VIIa-dependent substrate activation was measured in the presence of phospholipid vesicles or SW-13 cell membranes. The results showed that factor IX and factor X interacted with the same TF region located proximal to the putative phospholipid surface. According to the degree of activity loss of the sTF mutants, this TF region can be divided into a main region (residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, Tyr185) forming a solvent-exposed patch of 488 A(2) and an extended region which comprises an additional 7-8 residues, including the distally positioned Asn199, Arg200, and Asp204. Some of the identified TF residues, such as Trp158 and those within the loop Lys159-Lys165, are near the factor VIIa gamma-carboxyglutamic acid (Gla) domain, suggesting that the factor VIIa Gla-domain may also participate in substrate interaction. Moreover, the surface identified as important for substrate interaction carries a net positive charge, suggesting that charge interactions may significantly contribute to TF-substrate binding. The calculated surface-exposed area of this substrate interaction region is about 1100 A(2), which is approximately half the size of the TF area that is in contact with factor VIIa. Therefore, a substantial portion of the TF surface (3000 A(2)) is engaged in protein-protein interactions during substrate catalysis.  相似文献   

10.
Fibritin is a segmented coiled-coil homotrimer of the 486-residue product of phage T4 gene wac. This protein attaches to a phage particle by the N-terminal region and forms fibrous whiskers of 530 A, which perform a chaperone function during virus assembly. The short C-terminal region has a beta-annulus-like structure. We engineered a set of fibritin deletion mutants sequentially truncated from the N-termini, and the mutants were studied by differential scanning calorimetry (DSC) and CD measurements. The analysis of DSC curves indicates that full-length fibritin exhibits three thermal-heat-absorption peaks centred at 321 K (Delta H=1390 kJ x mol trimer(-1)), at 336 K (Delta H=7600 kJ x mol trimer(-1)), and at 345 K (Delta H=515 kJ x mol trimer(-1)). These transitions were assigned to the N-terminal, segmented coiled-coil, and C-terminal functional domains, respectively. The coiled-coil region, containing 13 segments, melts co-operatively as a single domain with a mean enthalpy Delta Hres=21 kJ x mol residue(-1). The ratio of Delta HVH/Delta Hcal for the coiled-coil part of the 120-, 182-, 258- and 281-residue per monomer mutants, truncated from the N-termini, and for full-length fibritin are 0.91, 0.88, 0.42, 0.39, and 0.13, respectively. This gives an indication of the decrease of the 'all-or-none' character of the transition with increasing protein size. The deletion of the 12-residue-long loop in the 120-residue fibritin increases the thermal stability of the coiled-coil region. According to CD data, full-length fibritin and all the mutants truncated from the N-termini refold properly after heat denaturation. In contrast, fibritin XN, which is deleted for the C-terminal domain, forms aggregates inside the cell. The XN protein can be partially refolded by dilution from urea and does not refold after heat denaturation. These results confirm that the C-terminal domain is essential for correct fibritin assembly both in vivo and in vitro and acts as a foldon.  相似文献   

11.
Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.  相似文献   

12.
13.
Perfringolysin O (theta-toxin) is a pore-forming cytolysin whose activity is triggered by binding to cholesterol in the plasma membrane. The cholesterol binding activity is predominantly localized in the beta-sheet-rich C-terminal half. In order to determine the roles of the C-terminal amino acids in theta-toxin conformation and activity, mutants were constructed by truncation of the C terminus. While the mutant with a two-amino acid C-terminal truncation retains full activity and has similar structural features to native theta-toxin, truncation of three amino acids causes a 40% decrease in hemolytic activity due to the reduction in cholesterol binding activity with a slight change in its higher order structure. Furthermore, both mutants were found to be poor at in vitro refolding after denaturation in 6 M guanidine hydrochloride, resulting in a dramatic reduction in cholesterol binding and hemolytic activities. These activity losses were accompanied by a slight decrease in beta-sheet content. A mutant toxin with a five-amino acid truncation expressed in Escherichia coli is recovered as a further truncated form lacking the C-terminal 21 amino residues. The product retains neither cholesterol binding nor hemolytic activities and shows a highly disordered structure as detected by alterations in the circular dichroism and tryptophan fluorescence spectra. These results show that the C-terminal region of theta-toxin has two distinct roles; the last 21 amino acids are involved to maintain an ordered overall structure, and in addition, the last two amino acids at the C-terminal end are needed for protein folding in vitro, in order to produce the necessary conformation for optimal cholesterol binding and hemolytic activities.  相似文献   

14.
To elucidate the role of Arg472 and C-terminal sequence of the mature form of cytochrome P450scc, a mitochondrial cytochrome P450, in the present work we have performed sequential removal of the C-terminal amino acid residues of the hemeprotein and evaluated their functional role in folding and catalysis. The removal of 2, 4, 7, or 9 amino acid residues (cytochrome P450scc mutants Delta2, Delta4, Delta7, and Delta9) does not significantly affect the physicochemical properties of the truncated forms of cytochrome P450scc, but results in significant increase in the expression level of the hemeprotein in Escherichia coli (Delta4 cytochrome P450scc mutant). However, removal of 10 C-terminal amino acid residues (Delta10 cytochrome P450scc) of mature form of cytochrome P450scc (replacement of codon for Arg472 for stop-codon) is followed by loss of the ability for correct folding in E. coli. Based on these data, it is concluded that the C-terminal amino acid residues of cytochrome P450scc (DeltaArg472-Ala481) play an important role in correct recombinant protein folding and heme binding by cytochrome P450scc during its expression in E. coli, while folding of mitochondrial cytochrome P450scc during its heterologous expression in bacterial cells is more similar to the folding of prokaryotic soluble cytochrome P450's than to microsomal cytochrome P450's.  相似文献   

15.
To probe the secondary structure of the C-terminus (residues 165-243) of lipid-free human apolipoprotein A-I (apoA-I) and its role in protein stability, recombinant wild-type and seven site-specific mutants have been produced in C127 cells, purified, and studied by circular dichroism and fluorescence spectroscopy. A double substitution (G185P, G186P) increases the protein stability without altering the secondary structure, suggesting that G185 and G186 are located in a loop/disordered region. A triple substitution (L222K, F225K, F229K) leads to a small increase in the alpha-helical content and stability, indicating that L222, F225, and F229 are not involved in stabilizing hydrophobic core contacts. The C-terminal truncation Delta(209-243) does not change the alpha-helical content but reduces the protein stability. Truncation of a larger segment, Delta(185-243), does not affect the secondary structure or stability. In contrast, an intermediate truncation, Delta(198-243), leads to a significant reduction in the alpha-helical content, stability, and unfolding cooperativity. The internal 11-mer deletion Delta(187-197) has no significant effect on the conformation or stability, whereas another internal 11-mer deletion, Delta(165-175), dramatically disrupts and destabilizes the protein conformation, suggesting that the presence of residues 165-175 is crucial for proper apoA-I folding. Overall, the findings suggest the presence of stable helical structure in the C-terminal region 165-243 of lipid-free apoA-I and the involvement of segment 209-243 in stabilizing interactions in the molecule. The effect of the substitution (G185P, G186P) on the exposure of tryptophans located in the N-terminal half suggests an apoA-I tertiary conformation with the C-terminus located close to the N-terminus.  相似文献   

16.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

17.
18.
A CB1 cannabinoid receptor peptide fragment from the C-terminal juxtamembrane region autonomously inhibits adenylyl cyclase activity in a neuroblastoma membrane preparation. The cannabinoid receptor antagonist, SR141716A, failed to block the response. The peptide was able to evoke the response in membranes from Chinese hamster ovary (CHO) cells that do not express the CB1 receptor. These studies are consistent with a direct activation of Gi by the peptide. To test the importance of a BXBXXB sequence, Lys403 was acetylated, resulting in a peptide having similar affinity but reduced efficacy. N-Terminal truncation of Arg401 resulted in a 6-fold loss of affinity, which was not further reduced by sequential truncation of up to the first seven amino acids, four of which are charged. N-Terminal-truncated peptides exhibited maximal activity, suggesting that Gi activation can be conferred by the remaining amino acids. Truncation of the C-terminal Glu417 or substitution of Glu417 by a Leu or of Arg401 by a Norleucine reduced activity at 100 microM. The C-terminal juxtamembrane peptide was constrained to a loop peptide by placement of Cys residues at both terminals and disulfide coupling. This modification reduced the affinity 3-fold but yielded near-maximal efficacy. Blocking the Cys termini resulted in a loss of efficacy. Circular dichroism spectropolarimetry revealed that all C-terminal juxtamembrane peptide analogues exist in a random coil conformation in an aqueous environment. A hydrophobic environment (trifluoroethanol) failed to induce alpha-helix formation in the C-terminal juxtamembrane peptide but did so in less active peptides. The anionic detergent sodium dodecyl sulfate induced alpha-helix formation in all analogues except the loop peptide, where it induces a left-handed PII conformation. It is concluded that alpha-helix formation is not required for Gi activation.  相似文献   

19.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

20.
We examined patterns of the proteins that were expressed in human umbilical vein endothelial cells (HUVEC) in response to oxidative stress by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). When HUVEC were exposed to H2O2 at 100 microM for 60 min, the intensities of eight spots increased and those of eight spots decreased on 2D gels, as compared with control gels, after staining with silver. These changes were also observed after exposure of cells to hydroperoxides such as cumene hydroperoxide and tert-butyl hydroperoxide, but not after exposure to other reagents that induce oxidative stress such as S-alkylating compounds, nitric oxide, and salts of heavy metals. Therefore, these proteins were designated hydroperoxide responsive proteins (HPRPs). Microsequencing analysis revealed that these HPRPs corresponded to at least six pairs of proteins. Of these, four pairs of HPRPs were thioredoxin peroxidase I (TPx I), TPx II, TPx III, and the product of human ORF06, all of which belong to the peroxiredoxin (Prx) family and all of which are involved in the elimination of hydroperoxides. The other two pairs corresponded to heat shock protein 27 (HSP27) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH), respectively. The variants that appeared in response to hydroperoxides had molecular masses similar to the respective native forms, but their pI values were lower by 0.2-0.3 pH units than those of the corresponding native proteins. These variants were detected on 2D gels after cells had been exposed to hydroperoxides in the presence of an inhibitor of protein synthesis. All variants were generated within 30 min of exposure to 100 microM H2O2. The variants of TPx I and TPx II appeared within 2 min of the addition of H2O2 to the culture medium. The HPRPs returned to their respective native forms after the removal of stress. Our results indicated that at least six proteins were structurally modified in response to hydroperoxides. Analysis by 2D-PAGE of 32P-labeled proteins revealed that the variant of HSP27 was its phosphorylated form while the other HPRPs were not modified by phosphorylation. Taken together, the results suggest that 2D-PAGE can reveal initial responses to hydroperoxide stress at the level of protein modification. Moreover, it is possible that the variants of four types of Prx might reflect intermediate states in the process of hydroperoxide elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号