首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The adrenergic regulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. Noradrenaline in increasing concentrations progressively inhibited K+-evoked [3H]histamine release from cortical slices, whereas phenylephrine and isoprenaline were ineffective. Yohimbine, a preferential α2-adrenoceptor antagonist, reversed the noradrenaline effect in an apparently competitive manner and with a mean K i value of 30 n M . Phentolamine reversed the noradrenaline effect with a similar potency, whereas propranolol was ineffective. The imidazolines clo-nidine and oxymetazoline acted as partial agonists, oxymeta-zoline even behaving as an apparent antagonist. In vivo clo-nidine also inhibited [3H]histamine formation in cerebral cortex, an effect reversed by the administration of yohimbine. However, yohimbine failed to increase significantly [3H]histamine release in vitro and [3H]histamine formation in vivo, suggesting that adrenergic receptors are not activated by endogenous noradrenaline released under basal conditions. It is concluded that adrenergic α2-adrenoceptors presumably located on histaminergic axons control release and synthesis of histamine in the brain.  相似文献   

2.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:4,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

3.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3H] 5, 7-dichlorokynurenic acid ([3H]- DCKA) but not of the agonist ligand [3H] glycine ([3H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3H] DCKA binding with [3H] Gly binding being unaltered. Moreover, the densities of [3H] DCKA binding were not significantly different from those of [3H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3H] Gly binding than of [3H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain.  相似文献   

4.
Abstract— Rat liver and brain slices were incubated in vitro with [3H]melatonin. Liver slices synthesized small amounts of [3H]5-methoxyindoleacetic acid ([3H]5-MIAA) along with other melatonin metabolites including 6-hydroxymelatonin. Pretreatment of animals prior to killing with the irreversible monoamine oxidase inhibitor pargyline allowed [3H]5-methoxytryptamine ([3H]5-MT) to be recovered from the incubation. No [3H]5-MIAA or [3H]5-MT could be detected in incubations with hypothalamic slices or following intraventrieular injection of [3H]melatonin. The possibility that the deacetylase aryl acylamidase was in part responsible for the deacetylation occurring in liver slices was examined. Liver aryl acylamidase was able to utilize [3H]melatonin as substrate to produce [3H]5-MT. Furthermore, the liver enzyme was inhibited by melatonin ( Ki. 1 m m ) when tested with the alternate substrate o -nitroacetanalide. Brain aryl acylamidase did not generate any detectable [3H]5-MT nor was it inhibited by melatonin. These results suggest that 5-MT is not formed in brain from melatonin although trace amounts of 5-MT in the periphery could be derived from this precursor.  相似文献   

5.
Abstract: Displacement of [3H]glutamate by 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid and quisqualate (in the presence of saturating concentrations of ionotropic glutamate receptor agonists) was used to characterize optimal ionic conditions, distribution, and the ontogeny of glutamate receptor binding sites in rat brain. Using rat forebrain membranes or receptor autoradiography, optimal 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive [3H]glutamate binding was found in the presence of 100 m M bromide ions and in the absence of calcium ions. Under these conditions, [3H]glutamate binding was relatively quisqualate insensitive. In regions of the neonatal (11-day-old) and adult rat brain, this [3H]glutamate binding was highest in forebrain (striatum, cerebral cortex, and hippocampus) and hypothalamus/midbrain but was lower in the cerebellum, olfactory bulb, and pons/medulla regions. 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive and quisqualate-insensitive [3H]glutamate binding was present in the rat forebrain at 1 day of age and gradually increased more than twofold by day 50 (adult). Thus, in the presence of bromide ions and in the absence of calcium ions, [3H]glutamate labels a subpopulation of metabotropic glutamate receptors that are sensitive to 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid but insensitive to quisqualate. Expression of [3H]glutamate binding under these conditions was both regionally and developmentally regulated in rat brain, suggesting that [3H]glutamate is labeling a distinct population of metabotropic glutamate receptors.  相似文献   

6.
Metabolism of Deoxyuridine in Rabbit Brain   总被引:1,自引:2,他引:1  
Abstract: The metabolism of [3H]deoxyuridine by rabbit brain was investigated in vitro and in vivo . In vitro , brain slices from various regions of brain and from all age groups accumulated [3H]deoxyuridine from artificial CSF. Within the slices, a portion of the accumulated [3H]deoxyuridine was metabolized to [3H]deoxyuridine phosphate, with subsequent conversion to [3H]thymidine phosphate, and ultimately [3H]DNA. The percentage of the [3H]deoxyuridine phosphorylated and subsequently converted into [3H]DNA was highest at birth and declined to adult levels in 3-month-old rabbits. Thymidine, when added to the incubation medium with the [3H]deoxyuridine, was approximately 10 times as potent as unlabeled deoxyuridine in inhibiting the intracellular phosphorylation and conversion of [3H]deoxyuridine to [3H]thymidine phosphate in brain slices. In vivo , 2.5 h after intraventricular injection of [3H]deoxyuridine, over 90% of the [3H]deoxyuridine was cleared from the central nervous system at all ages. However, in both newborn and 3-month-old rabbits, approximately 40 and 12%, respectively, of the 3H remaining in brain was phosphorylated and converted to [3H]thymidine phosphates; and 11 and 4%, respectively, of the 3H remaining in brain was converted to [3H]DNA. These results show that both immature and mature rabbit brain is able to incorporate deoxyuridine into DNA. Thus, all the enzymes involved in this conversion, including thymidylate synthetase (EC 2.1.1.45), are present and active in brain throughout life.  相似文献   

7.
Abstract— Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTPγS resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent B max values in both Mg2+/Na+ and Mg2+/Na+-free buffer when assayed at 0°c. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known me-tabotropic glutamate receptors, with neither 1 S ,3 R -amino-1,3-cyclopentanedicarboxylic acid (1 S ,3 R -ACPD) nor ibo-tenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP-γS also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-ni-troquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.  相似文献   

8.
EFFECTS OF AMINO-OXYACETIC ACID ON [3H]GABA UPTAKE BY RAT BRAIN SLICES   总被引:1,自引:0,他引:1  
Abstract— The effect of amino-oxyacetic acid on the uptake of [3H]GABA by rat brain slices was studied. When added simultaneously with [3H]GABA, amino-oxyacetic acid had no significant effect on [3H]GABA uptake. However, preincubation of brain slices with amino-oxyacetic acid prior to addition of [3H]GABA produced inhibition of uptake, which increased with longer duration of preincubation. The inhibitory effect of amino-oxyacetic acid was maximal at 2 mM concentration and concentrations sufficient to inhibit significantly GABA:glutamate transaminase (10--6 M) had no effect on [3H]GABA uptake. D-Cycloserine and β-hydrazino-propionic acid also inhibited [3H]GABA uptake, but the amounts required were considerably in excess of those needed to inhibit GABA:glutamate transaminase. 4-Deoxypyridoxine inhibited [3H]GABA uptake, whether given in vivo or in vitro , and the inhibitory effect of amino-oxyacetic acid was reversed with pyridoxine. GABA transport appears to be dependent on pyridoxal phosphate and interference with this function of the vitamin is suggested as the basis for the inhibitory effect of amino-oxyacetic acid on [3H]GABA uptake.  相似文献   

9.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

10.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VIVO STUDIES   总被引:8,自引:8,他引:0  
Abstract— The total concentrations of vitamin B6 (B6) in plasma, choroid plexus, CSF and brain of adult New Zealand white rabbits, measured fluorometrically, were 0.30, 15.10, 0.39 and 8.90 μ mol/l or kg respectively. The mechanisms by which B6 enters and leaves brain, choroid plexus and CSF were investigated by injecting [3H]pyridoxine (PIN) intravenously, intraventricularly and intraarterially. [3H]PIN, with or without unlabelled PIN, was infused intravenously at a constant rate into conscious rabbits. At 150 min, [3H]B6 readily entered CSF, choroid plexus and brain. The addition of 0.5 mmol/kg carrier PIN to the infusion solution depressed the relative entry of [3H]B6 into CSF, choroid plexus and brain by about 80%. After intraventricular injection, [3H]PIN readily entered brain from CSF. The intraventricular injection of carrier PIN with [3H]PIN decreased the amount of [3H]B6 in brain and also decreased the percentage of [3H]B6 in CSF and brain that was phosphorylated. During one pass through the cerebral circulation, [3H]PIN (1 μ m ) was cleared from the circulation no more rapidly than mannitol. These results were interpreted as showing that the entry of B6 from blood into CSF and presumably the extracellular space of brain and thence into brain cells involves one or more saturable transport and/or metabolic steps.  相似文献   

11.
Abstract: Histamine H1- receptors labeled with [3H]mepyramine in rat brain show an age-dependent development. [3H]Mepyramine receptor density and histidine decarboxylase activity in whole rat brain reach adult levels at 25–30 days after birth and they attain 50% of adult level at day 10 and 17, respectively. The apparently later development of histidine decarboxylase activity in whole rat brain is partly accounted for by a biphasic developmental increase of this enzymatic activity in cerebral cortex. For all other brain regions examined, the development of histamine H1- receptors parallels that of histidine decarboxylase. The increase in [3H]mepyramine binding can be accounted for by an absolute increase in the numbers of the receptor sites, with no change in affinity. Subcellular fractionation studies indicate that histamine H1- receptors are predominantly associated with synaptosomal fractions derived from both newborn and adult rat.  相似文献   

12.
4-Aminobutyraldehyde as a Substance Convertible In Vivo to GABA   总被引:3,自引:2,他引:1  
Abstract: [2,3-3H]4-Aminobutyraldehyde ([3H]ABAL) was injected subcutaneously into mice, which were sacrificed at various intervals following injection. [3H]γ-Aminobutyric acid ([3H]GABA) synthesized in vivo from [3H]ABAL was extracted from the brains, separated, and quantitated. The results showed that in the brain, injected [3H]ABAL was rapidly transformed into [3H]GABA. [3H]ABAL may penetrate the blood-brain barrier into the central nervous system and then be oxidized to [3H]GABA.  相似文献   

13.
Abstract: A specific binding site for [3H]metergoline characterized by a KD of 0.5–1.0 nM was detected in microsomal and synaptic plasma membranes from various areas of the adult rat brain. Experiments with 5,7-dihydroxy-tryptamine- and kainic acid-induced lesions indicated that this specific binding site was localized post-synaptically with respect to serotoninergic neurons. The pharmacological characteristics of [3H]metergoline binding to microsomal membranes from the whole forebrain strongly suggest that this ligand labels a class of serotonin receptors. This was particularly obvious in the hippocampus in which serotonin was about 400 times more potent than dopamine and norad-renaline for displacing bound [3H]metergoline. In the striatum, serotonin was only 10 times as potent as dopamine in inhibiting [3H]metergoline binding, suggesting that this ligand may also bind to dopamine receptors. Striking similarities between the binding sites for [3H]metergoline and [3H]serotonin were observed in the hippocampus. Thus, not only the total numbers of binding sites for these two ligands in control rats but also their respective increases following intracerebral 5,7-dihydroxytryptamine treatment were very similar. Therefore, at least in the hippocampus, [3H]metergoline might well be the appropriate ligand for studying the characteristics of the 'antagonist form' of serotonin receptors postulated by Bennett and Snyder.  相似文献   

14.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

15.
Abstract: [ d -Penicillamine2,5]enkephalin (DPDPE) is an enzymatically stable, δ-opioid receptor-selective peptide, which produces analgesia when given intracerebroventricularly. However, because only modest analgesic effects were seen after subcutaneous administration of DPDPE, it has been inferred that it does not cross the blood-brain barrier well. In this present study, a vascular brain perfusion technique in anesthetized rats was used to measure directly whether [3H]DPDPE could cross the blood-brain and/or the blood-CSF barriers. The results indicated that the brain uptake of [3H]DPDPE was significantly greater than that of [14C]sucrose, a vascular marker ( p < 0.01), and than that of [3H]DPDPE into the CSF ( p < 0.01). Furthermore, HPLC analysis confirmed the integrity of the 3H to DPDPE and demonstrated that intact [3H]DPDPE entered the brain. Although 1 m M leucine-enkephalin failed to inhibit uptake of [3H]DPDPE, unlabeled DPDPE (100 µ M ) caused a significant inhibition of the brain uptake ( p < 0.01) but not the CSF uptake of [3H]DPDPE. These data provide evidence that intact [3H]DPDPE enters the CNS of anesthetized rats by saturable and nonsaturable mechanisms. In addition, the saturable mechanism is likely to be found at the blood-brain barrier, with the blood-CSF barrier playing only a minor role in the brain uptake of this peptide.  相似文献   

16.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

17.
Abstract— [3H]Choline uptake has been measured in vivo in the rat hippocampus. Pharmacological agents and lesions which profoundly affect sodium-dependent, high-affinity [3H]choline uptake in vivo similarly affect [3H]choline uptake measured in vitro. Pentobarbital (65 mg/kg) and oxotremorine (0.75 mg kg) cause a decrease in [3H]choline uptake. Scopolamine (5 mg/kg) and iontophoretically applied extracellular potassium cause an increase in [3H]choline uptake. Septal lesions cause a decrease in [3H]choline uptake. Application of the general method may allow direct examination of presynaptic function and neural integration in the undisrupted living mammalian brain.  相似文献   

18.
Abstract: To explore target sites for endogenous d -serine that are different from the glycine site of the N -methyl- d -aspartate (NMDA) type glutamate receptor, we have studied the binding of d -[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 µ M ) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 m M unlabeled d -serine. Association, dissociation, and saturation experiments indicated that d -[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K D of 614 n M and a B max of 2.07 pmol/mg of protein. d -Serine, l -serine, and glycine produced a total inhibition of the specific DCK-insensitive d -[3H]serine binding to the cerebellum with similar K i values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 µ M . The profiles of displacement of the DCK-insensitive d -[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive d -[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive d -[3H]serine binding site could be a novel candidate for a target for endogenous d -serine in mammalian brains.  相似文献   

19.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

20.
Abstract— The formation of histamine in brain was studied in mice injected with l -[14C]-histidine (ring 2-14C) intravenously (i.v.) or intracerebrally; [14C]histamine appeared rapidly and exhibited a rapid rate of turnover. Drugs known to block various pathways of histamine catabolism were tested for effects on brain–[14C]histamine and [14C]-methyl-histamine in mice given (1) [14C]histamine i.v., (2) [14C]histamine intracerebrally, and (3) l -[14C]histidine i.v. Blood-borne histamine did not enter brain; brain histamine was formed locally by decarboxylation of histidine Methylhistamine did cross the blood-brain barrier. Methylation was the major route of histamine catabolism in mouse brain and some of the methylhistamine formed was destroyed by monoamine oxidase. No evidence for catabolism by the action of diamine oxidase was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号