首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Scatchard plot for the strongly bound Eu3+ to deionized bacteriorhodopsin (bR) was made using a method based on measuring the concentration of unbound Eu3+ from its fluorescence intensity. The results suggest that the first mole of Eu3+ added to a mole of bR is strongly bound by displacing 2-3 protons. In order to reconcile this result with the previous time-resolved fluorescence studies on Eu(3+)-regenerated bR, which showed the presence of 3 sites of comparable binding constants, one is forced to conclude that the emission from the strongly bound Eu3+ is completely quenched, e.g. by energy transfer to the retinal. For this to take place, the Eu3+ must be within a few A from the retinal, i.e. within the retinal pocket (the active site). The possible importance of this conclusion to the deprotonation mechanism of the protonated Schiff base, the switch of the proton pump in bR, is discussed.  相似文献   

2.
Saturation analysis of equilibrium binding of iodinated thyrotropin (125I-TSH) to normal human thyroid preparations yielded linear Scatchard plots under non-physiological conditions of pH 6.0 or 20 mM Tris/acetate buffer, pH 7.4. The apparent equilibrium dissociation constant of this binding was approximately 10(-8) M. By contrast, nonlinear plots were obtained under standard conditions of pH 7.4 and 40 mM Tris/acetate buffer. Resolution of the components of these curves by computer analysis revealed the presence of at least two classes of binding sites, one of which is of a low capacity and high affinity (approximately 10(-10) M) consistent with receptor binding. The other component is of a high capacity and lower affinity. Binding to non-target tissues of muscle, parathyroid, mammary carcinoma, and placenta was only demonstrable at pH 6.0 or in 20 mM Tris/acetate buffer, pH 7.4, yielding linear Scatchard plots with similar binding affinity (approximately 10(-8)M) to normal thyroid but much reduced capacity. Preincubation of thyroid tissue at 50 degrees C resulted in an apparent selective loss of the high affinity component of binding measured under standard conditions. Kinetic experiments on the dissociation of bound 125I-TSH were undertaken to determine whether the non-linearity of Scatchard plots was due to two or more classes of binding sites or negative cooperativity. It was found that the experimental determinant that is presently ascribed to a negative cooperativity phenomenon regulating receptor affinity (i.e. an enhanced dilution-induced dissociation rate in the presence of excess native hormone), although apparently hormone-specific, was demonstrated under nonphysiological binding conditions and in non-target tissue. Significantly, the phenomenon was found under conditions of pH 6.0 or 20 mM Tris where a linear Scatchard plot was obtained. The evidence thus suggests that 125I-TSH binds to heterogeneous binding sites (of which the high affinity is probably the receptor for TSH) and that the enhanced dilution-induced dissociation of bound hormone by native hormone for this system, is only a characteristic of the low affinity binding site (maybe gangliosides).  相似文献   

3.
In this work we study the decay of the polarization of the Trp fluorescence in native bacteriorhodopsin (bR), deionized bR (dlbR), and the retinal-free form of bR, bacterioopsin (bO), using picosecond laser/streak camera system. Two types of depolarization processes are observed, one around 250 ps, which is temperature independent around room temperature, and the other in the 1-3-ns range, which is sensitive to temperature and certain bR modifications. This suggests the presence of at least two different environments for the eight Trp molecules in bR. Native bR and deionized bR gave the same depolarization decay times, suggesting that the removal of metal cations does not change the microenvironment of the emitting Trp molecules. The slow component is faster in bO than in bR, suggesting a change in the environment of the Trp molecules upon the removal of the retinal chromophore. All these results are discussed in terms of the different mechanisms of Trp fluorescence depolarization. A comparison between the depolarization decay in rhodopsin and bR is made.  相似文献   

4.
Eliash T  Ottolenghi M  Sheves M 《FEBS letters》1999,447(2-3):307-310
An outstanding problem relating to the structure and function of bacteriorhodopsin (bR), which is the only protein in the purple membrane of the photosynthetic microorganism Halobacterium salinarium, is the relation between the titration of Asp-85 and the binding/unbinding of metal cations. An extensively accepted working hypothesis has been that the two titrations are coupled, namely, protonation of Asp-85 (located in the vicinity of the retinal chromophore) and cation unbinding occur concurrently. We have carried out a series of experiments in which the purple blue equilibrium and the binding of Mn2+ ions (monitored by electron spin resonance) were followed as a function of pH for several (1-4) R = [Mn2+]/[bR] molar ratios. Data were obtained for native bR, bR mutants, artificial bR and chemically modified bR. We find that in the native pigment the two titrations are separated by more than a pKa unit [delta pKa = pKa(P/B)-pKa(Mn2+) = (4.2-2.8) = 1.4]. In the non-native systems, delta pKa values as high as 5 units, as well as negative delta pKas, are observed. We conclude that the pH titration of cation binding residues in bR is not directly related to the titration of Asp-85. This conclusion is relevant to the nature of the high affinity cation sites in bR and to their role in the photosynthetic function of the pigment.  相似文献   

5.
Friedman N  Ottolenghi M  Sheves M 《Biochemistry》2003,42(38):11281-11288
The special trimeric structure of bacteriorhodopsin (bR) in the purple membrane of Halobacterium salinarum, and especially, the still controversial question as to whether the three protein components are structurally and functionally identical, have been subject to considerable work. In the present work, the problem is approached by studying the reconstitution reaction of the bR apo-protein with all-trans retinal, paying special attention to the effects of the apo-protein/retinal (P:R) ratio. The basic observation is that at high P:R values, the reconstitution reaction proceeds via two distinct, fast and slow, pathways associated with two different pre-pigment precursors absorbing at 430 nm (P(430)) and 400 nm (P(400)), respectively. These two reactions, exhibiting 2:1 (P(430)/P(400)) amplitude ratios, are markedly affected by the P:R value. The principal feature is the acceleration of the P(400) --> bR transition at low P:R ratios. The data are interpreted in terms of a scheme in which the added retinal first occupies two protein retinal traps, R(1) and R(2), from which it is transferred to two spectroscopically distinct binding sites corresponding to the two pre-pigments, P(430) and P(400), respectively. Two noncovalently bound retinal molecules occupy two P(430) sites of the bR trimer, while one (P(400)) occupies the third. Binding is completed by generating the retinal-protein covalent bond. Analogous experiments were also carried out with an aromatic bR chromophore and with the D85N bR mutant. The accumulated data clearly point out the heterogeneity of the binding reaction intermediates, in which two are clearly distinct from the third. However, CD spectroscopy strongly suggests that even the two P(430) sites are not structurally identical. The heterogeneity of the P intermediates in the binding reaction can be accounted for, either by being induced by cooperativity or by an intrinsic heterogeneity that is already present in the apoprotein. The question as to whether the final reconstituted pigment, as well as native bR, are nonhomogeneous should be the subject of future studies.  相似文献   

6.
The problem of the affinity and quantity determination of two classes of binding sites for ligand-receptor interaction using either Scatchard or Klotz plots was considered. Klotz and Hunston previously solved this problem only for the case of a representation of experimental data using the Scatchard plot. Since their publication, it was the common view that only the use of the Scatchard plot allows solving this problem. However, in some cases, using the Klotz plot is more convenient for a representation of experimental data concerning ligand-receptor interaction, though usually, this plot was used only for the evaluation of receptor affinity with one class of binding sites. In the present paper, it was demonstrated that Klotz plot also could be used for the evaluation affinity and quantity of two classes of binding sites.  相似文献   

7.
A human thyroid adenoma (benign nodule) was identified which exhibited a linear Scatchard plot of 125I-TSH binding, characteristic of a single class of binding site with high affinity (Kd = 0.5±0.1 nM) and low binding capacity (0.8±0.2 pmol/mg protein). In contrast, Scatchard analysis of binding to adjacent normal thyroid was nonlinear, suggesting the presence of high and low-affinity binding sites with Kd's of 0.4±0.2 and of 27.9±11.0 nM and capacities of 0.7±0.3 and 1.8±1.0 pmol/mg protein, respectively. Dissociation of bound 125I-TSH from membranes of both adenoma and normal tissue revealed identical enhancement of dissociation in the presence of excess native hormone, thought to be evidence for the “negative cooperativity” model of hormone-receptor interaction. Furthermore, adenylate cyclase from both tissues was equally responsive to TSH. Thus, a thyroid adenoma which contains TSH-responsive adenylate cyclase still exhibited enhanced dissociation by native hormone, even though Scatchard analysis yielded a single, non-cooperative class of binding sites. This suggests that enhanced dissociation of bound hormone does not provide a demonstration of negatively-cooperative site-site interaction. Furthermore, nonlinear Scatchard plots, typical of TSH binding in normal thyroid, represent two classes of binding sites, of which the high affinity type is responsible for stimulation of adenylate cyclase.  相似文献   

8.
The IGF-I receptor binds IGF-I with complex kinetics characterized by a curvilinear Scatchard plot, suggesting receptor heterogeneity and apparent negative cooperativity. To explore the molecular mechanisms underlying these properties, we have characterized the binding of a hybrid receptor formed from a wild-type receptor monomer and a mutant receptor monomer devoid of binding activity. Receptor hybrids were generated by transient co-transfection of cDNAs encoding wild-type and mutant receptors with unique epitope tags. Hybrid receptors were purified from transfected cells by sequential immuno-affinity chromatography and their ligand-binding properties were determined. Complementation produced a hybrid with near wild-type affinity. Dissociation studies demonstrated that the hybrid did not exhibit negative cooperativity.  相似文献   

9.
The binding of 125I-labeled human prothrombin to native and papain-treated tissue thromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard plots for the protein binding suggest the presence at thromboplastin surface of two types of binding sites, high affinity [Kd(app) = 7.4.10(-8) M] and moderate affinity [Kd(app) = 7.9.10(-5) M]. The removal of Ca2+ did not influence the Kd (values for these) sites but markedly reduced their number. Proteolysis by papain caused a decrease in the affinity of high affinity sites without affecting the Kd values of the moderate affinity sites yet caused a proportional increase in the number of both high and moderate affinity sites in the presence of Ca2+. At low prothrombin concentrations a positive cooperativity of protein binding at high affinity sites in the presence of Ca2+ was observed.  相似文献   

10.
Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.  相似文献   

11.
Computer simulations of equilibrium binding studies of a mixture of two labeled ligands binding competitively to a single class of identical and independent sites (receptors) were performed to investigate how ligand heterogeneity affects the observed data in such studies. The simulated data are presented in Scatchard plots. Ligand heterogeneity was generally found to be indistinguishable from the case of a homogeneous ligand when usual experimental conditions applied (that is, Scatchard plots of the data were straight lines). Some factors that increased the probability of recognizing heterogeneity in the system were identified, however. These are 1) a large difference between the dissociation constants of the two ligands, 2) a high concentration of receptors relative to the dissociation constant of the higher-affinity ligand, 3) a high concentration of the lower-affinity ligand relative to that of the higher-affinity ligand, 4) a high specific activity of the lower-affinity ligand relative to that of the higher-affinity ligand, and 5) lack of experimental error. When ligand heterogeneity (under certain conditions) did cause curvilinearity in the Scatchard plot, the curve formed was always concave-downwards. Thus, ligand heterogeneity may occasionally mimic positive cooperativity, but never mimics negative cooperativity or multiple classes of binding sites. Implications of these findings for equilibrium binding studies involving lipoproteins (which are generally isolated as heterogeneous mixtures of particles) are discussed in detail. These findings are also relevant to equilibrium binding studies using ligands which are mixtures of stereoisomers or which contain chemical or radiochemical impurities.  相似文献   

12.
The effect of divalent ion binding to deionized bacteriorhodopsin (dI-bR) on the thermal transitions of the protein secondary structure have been studied by using temperature-dependent Fourier transform infrared (FT-IR) spectroscopy. The native metal ions in bR, Ca(2+), and Mg(2+), which we studied previously, are compared with Mn(2+), Hg(2+), and a large, synthesized divalent organic cation, ((Et)(3)N)(2)Bu(2+). It was found that in all cases of ion regeneration, there is a pre-melting, reversible conformational transition in which the amide frequency shifts from 1665 to 1652 cm(-1). This always occurs at approximately 80 degrees C, independent of which cation is used for the regeneration. The irreversible thermal transition (melting), monitored by the appearance of the band at 1623 cm(-1), is found to occur at a lower temperature than that for the native bR but higher than that for acid blue bR in all cases. However, the temperature for this transition is dependent on the identity of the cation. Furthermore, it is shown that the mechanism of melting of the organic cation regenerated bR is different than for the metal cations, suggesting a difference in the type of binding to the protein (either to different sites or different binding to the same site). These results are used to propose specific direct binding mechanisms of the ions to the protein of deionized bR.  相似文献   

13.
C V Rao 《Life sciences》1976,18(5):499-506
The Scatchard analysis of equilibrium prostaglandin (PG) F2α binding revealed that the binding was heterogeneous. The Hill plot of the same data had a slope of 0.68. This suggested that the heterogeneous nature of [3H] PGF2α binding was either due to the presence of negative cooperativity or to the presence of two groups of independent binding sites. The kinetic experiments revealed that the presence of excess unlabeled PGF2α in a diluting medium had no effect on dissociation rates at 25 fold dilution and it even retarded dissociation at higher dilutions. Furthermore, the observations that the low affinity PGF2α binding sites can exist in the absence of high affinity binding sites and high affinity binding sites can be selectively abolished by treatment with N-ethylmaleimide suggest that negative cooperativity was not responsible for heterogeneous [3H] PGF2α binding.  相似文献   

14.
The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (lambda(max) = 570 nm) to the blue form (lambda(max) = 605 nm) of bR. This transition can also be induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by evaluating the interaction between Mn(2+) and a nitroxyl radical probe covalently bound to several mutants in which protein residues were substituted by cystein. We have found that Mn(2+), which binds to the highest-affinity binding site, significantly affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be approximately 9.8 +/- 0.7 A. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn(2+) bound to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein. The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve negatively charged lipids located on the exterior of the bR trimer structure.  相似文献   

15.
The metabolism-independent metal binding characteristics of Ulva lactuca were investigated using both freeze-dried thalli and cell walls stripped of intracellular material by incubation in Triton-X followed by methanol. Biosorption of Cd, Zn, Cu and Co by freeze-dried thallus was concentration-dependent and followed Freundlich and Langmuir isotherms. The Freundlich plot suggested that freeze-dried U. lactuca had the greatest binding affinity for Cu compared with Cd, Zn and Co. The BET (Brunauer–Emmett–Teller) plot, which indicates a more complex form of adsorption, and the Scatchard plot were not adequate models for Cu adsorption. The Scatchard plot of Cd suggested that two Cd binding sites were available on the freeze-dried thallus, with the second, lower affinity site only becoming available at Cd loading capacities greater than 4.9mmol g dry wt. Cd nuclear magnetic resonance (NMR) studies confirmed that two binding sites were available for Cd on the freeze-dried algal powder, though only one was available on the cell wall, and that the affinity of the binding sites was greater for Cu than for Cd. The results of the NMR experiments suggested that Cd binds to oxygen-containing functional groups in the algal powder and on the cell wall. It is proposed that sulphate or hydroxyl groups attached to polysaccharide subunits are possible sites.  相似文献   

16.
The binding constants, K1 and K2, and the number of Ca2+ ions in each of the two high affinity sites of Ca2+-regenerated bacteriorhodopsin (bR) are determined potentiometrically at different pH values in the range of pH 3.5-4.5 by using the Scatchard plot method. From the pH dependence of K1 and K2, it was found that two hydrogen ions are released for each Ca2+ bound to each of the two high affinity sites. Furthermore, we have measured by a direct spectroscopic method the association constant, Ks, for the binding of Ca2+ to deionized bR, which is responsible for producing the blue to purple color change. Comparing the value of Ks and its pH dependence with those of K1 and K2 showed that the site corresponding to Ks is to be identified with that of K2. This is in agreement with the conclusion reached previously, using a different approach, which showed that it is the second Ca2+ that causes the blue to purple color change.

Our studies also show that in addition to the two distinct high affinity sites, there are about four to six sites with lower binding constants. These are attributed to the nonspecific binding in bR.

  相似文献   

17.
cAMP binding of the androgen receptor (AR) from murine skeletal muscle was studied. Testosterone affinity chromatography yielded androgen receptor with about 4000-fold purification. Determination of the cAMP binding in the affinity eluate, by adsorption of protein-cAMP complexes to cellulose ester filters or removal of unbound cAMP by dextran-coated charcoal, was not possible, as the observed binding was not stable during the assays. Displacement studies suggest that this is due to a very fast dissociation kinetics of the binding. The problem could be solved by assaying the components of affinity eluate immobilized to a testosterone affinity resin that stabilizes the cAMP-protein complexes. The cAMP binding found in the affinity eluate shows an upward concave Scatchard plot and is compatible with a model containing two independent binding sites with dissociation constants of 7 and 58 nM. However, a larger number of binding sites or negative cooperativity cannot be excluded. Sixteen cAMP binding sites were observed per testosterone binding site. The binding affinity of cAMP exceeds that of cGMP 200-fold, that of cCMP 2000-fold, and that of AMP and 2',3'-cAMP more than 10,000-fold. Results indicate that cAMP is bound by the AR, although it only represents about 1% of the total protein in the affinity eluate: (i) Specific testosterone and cAMP binding of affinity eluate was copurified by affinity chromatography, density gradient centrifugation, and gel filtration. The ratio of cAMP to testosterone binding in each peak was about 16:1, identical with that found in the total affinity eluate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Escherichia coli inorganic pyrophosphatase (PPase) is a hexamer of identical subunits. This work shows that trimeric form of PPase exhibits the interaction of the active sites in catalysis. Some trimer subunits demonstrate high substrate binding affinity typical for hexamer whereas the rest of subunits reveal more than 300-fold substrate affinity decrease. This fact indicates the appearance of negative cooperativity of trimer subunits upon substrate binding. Association of the wild-type (WT) trimer with catalytically inactive, but still substrate binding mutant trimer into hexameric chimera restores the high activity of the first trimer, characteristic of trimer incorporated in the hexamer of WT PPase. Interaction of PPase active sites suggests that there are pathways for information transmission between the active sites, providing the perfect organization and concerted functioning of the hexameric active sites in catalysis.  相似文献   

19.
Evidence for the reversible binding of paraquat to deoxyribonucleic acid   总被引:1,自引:0,他引:1  
Evidence for the reversible binding of paraquat to calf thymus DNA has been obtained using equilibrium dialysis and thermal melting point determinations. The data indicated the presence of at least two populations of binding site with affinity constants of 6.2 X 10(4) and 7.1 X 10(3) M-1, respectively. The binding capacities of DNA for paraquat were 66 and 480 nmol/mumol DNA nucleotide, respectively, and were equivalent to one ligand bound per 2 DNA phosphate groups. Putrescine inhibited paraquat binding to the low affinity sites without altering binding to the high affinity sites. Scatchard plots of paraquat binding characteristics indicated the presence of positive cooperativity between the compound and DNA. Thermal melting curves of DNA in the presence of paraquat and the endogenous amines putrescine, spermidine and spermine, provided evidence that paraquat cross-linked to DNA with a similar affinity as spermidine. The thermal melting point data also suggested the presence of positive cooperativity between ligand and macromolecule that possibly resulted from a conformation change in the structure of the DNA molecule. Paraquat competitively inhibited the binding of ethidium bromide to DNA and this effect was reversed by Na+. From the data, it is suggested that paraquat binds primarily to the negatively charged phosphates on the DNA backbone but is displaced into the interbase region occupied by the intercalator ethidium bromide. DNA binding of paraquat may, in part, account for its weak mutagenic activity.  相似文献   

20.
Prothrombin possesses two high affinity and four low affinity gamma-carboxyglutamic acid (Gla)-dependent gadolinium binding sites. Earlier work (Price, P. A., Williamson, M. K., and Epstein, D. J. (1981) J. Biol. Chem. 256, 1172-1176) has shown that tritium can be specifically incorporated at the gamma-carbon of Gla in proteins at pH 5. In the present work we show that inclusion of saturating concentrations of Ca2+ in nondenaturing buffer systems ranging from pH 5.5 to 8.5 prevents the exchange of tritium into all 10 Gla residues of prothrombin. Similarly, saturating concentrations of Gd3+ prevent tritium incorporation into Gla at pH 5.5. Positive cooperativity was observed for the binding of Gd3+ to human prothrombin (at pH 5.5) for the two high affinity sites (Kd congruent to 35 nM). The four low affinity sites bind Gd3+ with a Kd congruent to 5 microM. Incubation of prothrombin ranging in concentrations from 10 to 40 microM with 2 eq of Gd3+ at pH 5.5 prevents 5.7 (average of seven determinations) Gla residues from tritium incorporation. Sedimentation velocity experiments conducted at pH 5.5 indicate that prothrombin in the presence of saturating concentrations of Gd3+ polymerizes, most likely, to a trimer. Further, in the presence of 2 eq of Gd3+, calculated percent weight average concentration of monomer prothrombin is congruent to 100% at 10 microM, approximately equal to 95% at 20 microM, and congruento to 80% at 40 microM protein concentration. Thus, it appears that under conditions in which prothrombin primarily exists as a monomer, occupancy of the initial two metal binding sites by Gd3+ involves six Gla residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号