首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell-cell adhesion in Dictyostelium discoideum   总被引:2,自引:0,他引:2  
Three separate mechanisms of cell-cell adhesion have been shown to appear at different stages of development in Dictyostelium discoideum. During the first few hours of development, the cells synthesize and accumulate a glycoprotein of 24,000 daltons (gp24) that is positioned in the membrane. The time of appearance of gp24 correlates exactly with the time of appearance of cell-cell adhesion in two strains in which temporal control varies by several hours. Antibodies specific to gp24 are able to block cell-cell adhesion during the first few hours of development but not during later development. By 8 hr of development, another glycoprotein, gp80, that is not recognized by antibodies to gp24 accumulates on the surface of cells. This membrane protein mediates an independent adhesion mechanism during the aggregation stage that is resistant to 10 mM EDTA. Antibodies specific to gp80 can block EDTA-resistant adhesion during this stage. During subsequent development, gp80 is removed from the cell surface and replaced by another adhesion mechanism that is insensitive to antibodies to either gp24 or gp80. A lambda gt11 expression vector carrying a Dictyostelium cDNA insert was isolated that directs the synthesis of a fusion protein recognized by antibodies specific to gp24. This cDNA was used to probe a genomic library. A clone carrying a 1.4-kb insert of genomic DNA was recognized by the cDNA and shown to hybridize to a 0.7-kb mRNA that accumulates early in development. This unusually small RNA could code for the small protein, gp24. Southern analysis of restriction fragments generated by various enzymes on Dictyostelium DNA with both the cDNA and genomic clones indicated the presence of two tandem copies of the gene. This may account for the failure to recover mutations resulting in the lack of gp24. Mutations have been recovered that result in the lack of accumulation of gp80, and cells carrying these mutations have been shown to be missing the second adhesion mechanism. These mutant strains are able to complete development because the other adhesion mechanisms are not impaired. Sequential addition of adhesion mechanisms provides a means for the formation of multicellular organisms from previously solitary cells.  相似文献   

3.
UDP glucose pyrophosphorylase (UDPGP) (EC.2.7.7.9) is a developmentally regulated enzyme of Dictyostelium discoideum. Two polypeptides of UDPGP are translated from Dictyostelium mRNA. Recently we isolated a cDNA clone which encodes one of the UDPGP polypeptides (B. R. Fishel, J. A. Ragheb, A. Rajkovic, B. Haribabu, C. W. Schweinfest, and R. P. Dottin (1985). Dev. Biol. 110, 369-381). By hybridization with the cDNA and by in vitro translation and immunoprecipitation, we examined the effect of cell-cell contact and cAMP on the regulation of UDPGP expression. Disaggregation of slugs resulted in a rapid loss of UDPGP mRNA. Addition of cAMP to these cells resulted in increased levels of UDPGP mRNA, though not to the same extent as seen during normal development. The two UDPGP polypeptides observed in vitro are coordinately regulated. Unaggregated cells, starved and shaken rapidly in suspension, did not show UDPGP mRNA accumulation. However, addition of cAMP to these cells caused UDPGP induction, suggesting that the requirement for cell-cell contact could be bypassed in part by cAMP addition.  相似文献   

4.
Reduced cAMP secretion in Dictyostelium discoideum mutant HB3   总被引:1,自引:0,他引:1  
Extracellular cAMP induces the intracellular synthesis and subsequent secretion of cAMP in Dictyostelium discoideum (relay). cAMP relay was strongly diminished in mutant HB3 which shows abnormal development by making very small fruiting bodies. Extracellular cAMP binds to receptors on the surface of mutant cells and induces the rapid activation of adenylate cyclase. Intracellular cAMP rises to a concentration as high as that in wild-type cells but only a very small amount of cAMP is secreted. cAMP secretion in wild-type cells starts immediately after cAMP production, and is proportional to the intracellular cAMP concentration. In the mutant cells cAMP secretion starts a few minutes after cAMP production; by that time most of the intracellular cAMP is already degraded by phosphodiesterase and little cAMP is available for secretion. We conclude that mutant HB3 has a defect in the mechanism by which Dictyostelium cells secrete cAMP.  相似文献   

5.
Cell-cell adhesion and morphogenesis in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
During development of Dictyostelium discoideum, cells acquire EDTA-resistant cell-cell adhesion at the aggregation stage. The EDTA-resistant cell binding activity is associated with a cell surface glycoprotein of Mr 80,000 (gp80), which mediates cell-cell binding via homophilic interaction. Analysis of the structure of gp80 deduced from cDNA sequence reveals the presence of three internally homologous segments in the NH2-terminal domain, which also contains regions with homology to the neural cell adhesion molecule. Secondary structure predictions show an abundance of beta-structures and very few alpha-helices. This is confirmed by circular dichroism measurements. It is likely that the homologous segments are organized into globular structures, extended from the cell surface by a Pro-rich stalk domain. The cell binding activity of gp80 resides within the first globular repeat of the NH2-terminal domain and has been mapped to a 51 amino acid region between Val123 and Leu173. Synthetic oligopeptides corresponding to sequences within this region have been prepared and assayed for their ability to bind to cell surface gp80. Results lead to identification of the homophilic binding site to an octapeptide sequence within this region. Synthetic peptides containing this octapeptide sequence and univalent antibodies directed against this site block the formation of organized cell streams during aggregation. Although cell aggregates are eventually formed, most fail to undergo further development to give rise to slugs and fruiting bodies, indicating that cell-cell adhesion involving gp80 is an important step in normal morphogenesis.  相似文献   

6.
Dictyostelium discoideum cells were allowed to differentiate on agar for 600 min at room temperature. All of the cells were then competent to relay or amplify a cAMP signal, but none to produce a cAMP signal autonomously. The cells were stimulated with cAMP concentrations ranging from 10?9 to 3.5 × 10?7M. Populations of 106 cells could amplify an initial cAMP concentration of 2.5 × 10?9M with a low probability, while an initial cAMP concentration of 5 × 10?8M always induced a response. An initial cAMP concentration of 1.2 × 10?7M induced the maximum cellular release of cAMP observed; this corresponded to 3 × 107 molecules per cell. No cellular release of cAMP was detected for initial cAMP concentrations of 3 × 10?7M or more. The amplification of a 10?7M cAMP stimulus was complete within 8 sec, indicating the pulsatile nature of the cellular release of cAMP. The phosphodiesterase (PDE) activities of D. discoideum cells were measured over a wide range of cell densities. At densities above 7.5 × 104 cells/cm2, both cell-bound and extracellular (ePDE) activities declined, per cell, as cell density increased. These results are compared to ePDE activities derived from critical density measurements. We found that PDE activities were in the range of 10?13–10?14 moles of cAMP converted/cell/min under culture conditions consistent with normal aggregation.  相似文献   

7.
《The Journal of cell biology》1987,105(6):2523-2533
Dictyostelium discoideum expresses a developmentally regulated cell surface glycoprotein of Mr 80,000 (gp80), which has been implicated in the formation of the EDTA-resistant contact sites A at the cell aggregation stage. To determine whether gp80 participates directly in cell binding and, if so, its mode of action, we conjugated purified gp80 to Covaspheres (Covalent Technology Corp., Ann Arbor, MI) and investigated their ability to bind to cells. The binding of gp80- Covaspheres was dependent on the developmental stage of the cells, with maximal interaction at the late aggregation stage. Scanning electron microscopic studies revealed the clustering of gp80-Covaspheres at the polar ends of these cells, similar to the pattern of gp80 distribution on the cell surface as reported earlier (Choi, A. H. C., and Siu, C.- H., 1987, J. Cell Biol., 104:1375-1387). Precoating cells with an adhesion-blocking anti-gp80 monoclonal antibody inhibited the binding of gp80-Covaspheres, suggesting that Covasphere-associated gp80 might undergo homophilic interaction with gp80 on the cell surface. Quantitative binding of 125I-labeled gp80 to intact cells gave an estimate of 1.5 X 10(5) binding sites per cell at the aggregation stage. Binding of soluble gp80 to cells was blocked by precoating cells with the anti-gp80 monoclonal antibody. The ability of gp80 to undergo homophilic interaction was further tested in a filter-binding assay, which showed that 125I-labeled gp80 was able to interact with gp80 bound on nitrocellulose in a dosage-dependent manner. In addition, reassociation of cells was significantly inhibited in the presence of soluble gp80, suggesting that gp80 has a single cell-binding site. These results are consistent with the notion that gp80 mediates cell- cell binding at the aggregation stage of development via homophilic interaction.  相似文献   

8.
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.  相似文献   

9.
In Dictyostelium discoideum, both prespore and prestalk differentiation require extracellular cAMP. We investigated the difference in inducibility of the two cell types by cAMP. Previous studies indicate that cAMP added in the early stage of development inhibits prespore differentiation, and this was confirmed using three species of prespore specific mRNAs. By contrast, early treatment with cAMP did not inhibit, but induced the expression of prestalk-specific mRNA. These results indicate that differentiation pathways of the two cell types have different processes in the early stage of development.  相似文献   

10.
A cyclic nucleotide phosphodiesterase, PdeE, that harbors two cyclic nucleotide binding motifs and a binuclear Zn(2+)-binding domain was characterized in Dictyostelium. In other eukaryotes, the Dictyostelium domain shows greatest homology to the 73-kDa subunit of the pre-mRNA cleavage and polyadenylation specificity factor. The Dictyostelium PdeE gene is expressed at its highest levels during aggregation, and its disruption causes the loss of a cAMP-phosphodiesterase activity. The pdeE null mutants show a normal cAMP-induced cGMP response and a 1.5-fold increase of cAMP-induced cAMP relay. Overexpression of a PdeE-yellow fluorescent protein (YFP) fusion construct causes inhibition of aggregation and loss of the cAMP relay response, but the cells can aggregate in synergy with wild-type cells. The PdeE-YFP fusion protein was partially purified by immunoprecipitation and biochemically characterized. PdeE and its Dictyostelium ortholog, PdeD, are both maximally active at pH 7.0. Both enzymes require bivalent cations for activity. The common cofactors Zn(2+) and Mg(2+) activated PdeE and PdeD maximally at 10 mm, whereas Mn(2+) activated the enzymes to 4-fold higher levels, with half-maximal activation between 10 and 100 microm. PdeE is an allosteric enzyme, which is approximately 4-fold activated by cAMP, with half-maximal activation occurring at about 10 microm and an apparent K(m) of approximately 1 mm. cGMP is degraded at a 6-fold lower rate than cAMP. Neither cGMP nor 8-Br-cAMP are efficient activators of PdeE activity.  相似文献   

11.
12.
Adaptation in the motility response to cAMP in Dictyostelium discoideum   总被引:2,自引:0,他引:2  
When developing amebae of Dictyostelium discoideum are treated with constant concentrations of cAMP above 10(-8)M, the average rate of motility is depressed, with maximum inhibition at roughly 10(-6)M. It is demonstrated that shifting the concentration of cAMP from 0 M to concentrations ranging from 10(-8) to 10(-6)M in a perfusion chamber results in the immediate inhibition of motility. After shifting from 0 M to 10(-8) or 10(-7)M, the rate of cell motility remains low, then rebounds to a higher level, exhibiting a standard adaptation response. No adaptation is exhibited after a shift from 0 M to 10(-6)M, a concentration resulting in maximum inhibition. It is demonstrated that the level of inhibition and the extent of the adaptation period are dependent upon the concentration of cAMP after the shift, and that submaximal inhibition is additive. The characteristics of adaptation in this motility response are very similar to the characteristics of adaptation for the relay system and phosphorylation of the putative cAMP receptor.  相似文献   

13.
Dictyostelium discoideum cells synthesize and secrete the chemoattractant cAMP within minutes after chemotactic stimulation. During development, this signal-relay process is instrumental in cell aggregation, pattern formation, and differentiation. Cyclic AMP is known to accumulate inside the cell before secretion. In this study we investigated the subcellular localization of the nascent cAMP. After chemotactic stimulation at 0 degrees C and subsequent accumulation of intracellular cAMP, the newly synthesized chemoattractant could be released by gently opening cells in two different ways. Both methods make the cytosolic compartment accessible, whereas intracellular compartments surrounded by a membrane remain largely intact. The first method involved rapid lysis by forced passage through a 5-micron pore-size Nuclepore filter. The second technique was electropermeabilization under carefully controlled conditions that ensured the formation of small, stable pores in the plasma membrane. These pores allowed the passage of small molecules, such as cAMP, but not of macromolecules. To confirm the selectivity for the plasma membrane of both methods, we showed that a typical vesicular cell compartment, the lysosome, remained intact. Both procedures immediately released all intracellularly accumulated cAMP. We interpret our results as strong evidence for accumulation of nascent cAMP in the cytosolic compartment rather than in a vesicular compartment before it is secreted. This implies that cAMP secretion takes place via a trans-membrane transport mechanism, rather than by exocytosis.  相似文献   

14.
In this paper, we use singular perturbation methods to study the structure of travelling waves for some reaction-diffusion models obtained from the Martiel-Goldbeter and Goldbeter-Segel's models of cAMP signalling in Dictyostelium discoideum. As a consequence, we derive analytic formulae for quantities like wave speed, maximum concentration and other magnitudes in terms of the different biochemical constants that appear in the model.  相似文献   

15.
Abstract Using a shaking culture system, we have previously shown that both cell contact and cAMP are required for pre-spore differentiation in Dictyostelium discoideum [2]. In the present study, cAMP was removed from the medium by the use of a hydrolysing enzyme after cells had formed agglomerates. This treatment left the agglomerates unchanged, but caused a rapid decrease in the activity of UDP galactose transferase, a pre-spore-specific enzyme. This result indicates that cAMP is required even after agglomerate formation to maintain pre-spore differentiation.  相似文献   

16.
The cell surface cAMP receptor of Dictyostelium discoideum exists as a doublet of low (D) and high (R) electrophoretic mobility forms, both of which are phosphorylated in vivo. The R form is phosphorylated in a ligand-independent manner, while conversion of the R to D forms, induced by the chemoattractant, is accompanied by at least a 4-fold increase in the level of phosphorylation. When cells are stimulated with saturating levels of cAMP, increased phosphorylation is detectable within 5 s and reaches maximum levels by 5 min with a t1/2 of 45 s. Dephosphorylation of receptor, initiated by removal of the stimulus, is detectable within 30 s, has a half-time of 2 min, and reaches a plateau by 20 min. At half-maximal occupancy, phosphorylation occurred more slowly than at saturation, t1/2 = 1.5 min, and remained at intermediate levels until the cAMP concentration was increased. Accompanying electrophoretic mobility shifts occurred in all cases with similar, though not identical, kinetics. Both phosphorylation and mobility shift were half-maximal at 5 nM cAMP and saturated at 100 nM. Estimation of the specific activity of each receptor form indicates that not all sites are phosphorylated during the R to D transition; at least half of the sites are phosphorylated after the transition is completed. The rate of incorporation of phosphates into the receptor, held in the D form by cAMP, was less than one-third the rate of ligand-induced incorporation starting with the R form and was approximately twice the basal rate of incorporation. These results are compatible with ligand-induced receptor phosphorylation being an early event in the adaptation of other cAMP-induced responses.  相似文献   

17.
Multiple genes for cell surface cAMP receptors in Dictyostelium discoideum   总被引:12,自引:0,他引:12  
We have cloned and characterized three genes (CAR1, CAR2, CAR3) encoding potential cell surface, cyclic adenosine 3':5' monophosphate (AMP) receptors from Dictyostelium discoideum. The three proteins are predicted to be substantially similar in amino acid sequence throughout most of their transmembrane (TM) and loop domains but are distinctly different in their carboxyl terminal segments. In addition, all three genes possess an intron which interrupts an equivalent codon of TM3. CAR1 is expressed early in development when the cAMP relay system is being established. As development proceeds multiple size forms of CAR1 RNA are detected which apparently result from differences in their 5'-untranslated regions. Late in development levels of CAR1 RNA decrease. In contrast, CAR2 encodes a single sized RNA which is expressed only during postaggregative development. CAR3 expression is approximately 10% of CAR1 during early development, is maximal during tight aggregate formation but declines thereafter. Only one size class of CAR3 mRNA is detected throughout development. Because RNA for each of the three genes is present in postaggregative cells, it was of interest to determine the cell type distribution of each RNA. Gene-specific probes were hybridized to RNAs isolated from cells of Percoll gradient-enriched prespore and prestalk fractions and relative levels of hybridization compared. CAR1 and CAR3 show approximately the same pattern of accumulation; a 3-4 fold enrichment in prestalk cells. CAR2, however, is highly enriched in prestalk cells, more than 10 fold relative to prespore cells.  相似文献   

18.
During aggregation the cellular slime mold Dictyostelium discoideum synthesizes and releases pulses of cAMP about every five minutes. Current models proposed to explain this phenomenon postulate that oscillating levels of some key intracellular metabolite control the oscillatory synthesis of cAMP. We have assayed the levels of likely candidates for this metabolite during a cAMP oscillation, but have found them to remain constant. Compounds measured include ATP, GTP, glucose-1-phosphate, glucose-6-phosphate, isocitrate, α-ketoglutarate, amino acids, and other aminated metabolites. On the basis of this negative data, as well as results described elsewhere (Geller and Brenner, 1978), we question whether the proposed models are correct, and discuss several alternatives.  相似文献   

19.
Refinement of a perfusion technique permitted the simultaneous measurement of cAMP-elicited [3H]cAMP secretion and intracellular [3H]cAMP levels in sensitive D. discoideum amoebae. These data were compared with measurements of the rate of [32P]cAMP synthesis by extracts of amoebae sonicated at different times during the cAMP signaling response. cAMP stimulation of intact cells led to a transient activation of adenylate cyclase, which was blocked if 10(-4) M NaN3 was added with the stimulus. During responses elicited by 10(-6) M cAMP, 10(-8) M cAMP, and an increment in cAMP from 10(-8) M to 10(-7) M, the rate of cAMP secretion was proportional to the intracellular cAMP concentration. Removal of a 10(-6) M cAMP stimulus 2 min after the initiation of the response led to a precipitous decline in intracellular cAMP. This decline was more rapid than could be accounted for by secretion alone, suggesting intracellular phosphodiesterase destruction of newly synthesized cAMP. Employing these data and a simple rate equation, estimates of the time-course of the transient activation of adenylate cyclase and the rate constants for cAMP secretion and intracellular phosphodiesterase activity were obtained. The calculated rate of cAMP synthesis rose for approximately 1 to 2 min, peaked, and declined to approach prestimulus levels after 3 to 4 min. This time-course agreed qualitatively with direct measurements of the time-course of activation, indicating that the activation of adenylate cyclase is a major in determining the time-course of the cAMP secretion response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号