首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Ahmed  P. Quilt 《Plant and Soil》1980,57(2-3):187-194
Summary The effect of soil moisture stress on growth, nodulation and nitrogenase activity of two tropical forage legumes,Macroptilium atropurpureum cv. Siratro andDesmodium intortum cv. Greenleaf was studied in a pot experiment. After ten weeks growth, the highest moisture stress (20 per cent water holding capacity) significantly reduced only the top weight of both plants. Moisture stress progressively retarded top growth in the two legumes. Similar trends were also observed in defoliated plants. Moisture stress had little or no effect on the nodulation or nitrogenase activity of the plants.  相似文献   

2.
Corn plants (Zea mays L.) were grown in the field on two soils. On a droughty soil, water was withheld from some plants during the grain-filling period while other plants were irrigated. Carbon-14 was fed to the leaves, and translocation to different plant parts was determined. Translocation appeared to be more sensitive to moisture stress than was photosynthesis. More radioactive carbon was retained in both the fed portion and the nonfed portion of the leaf of stressed plants than in nonstressed plants. The stalk segment between the treated leaf and ear-node also contained less radioactivity in stressed plants than in nonstressed plants. On a soil with higher water-holding capacity, moisture stress was imposed on plants by root pruning. Plants under severe stress continued to translocate photosynthetically assimilated 14C nearly as well as nonstressed plants for 90 minutes. Between 90 and 120 minutes after labeling, there was a major reduction in amount translocated in stressed plants compared to the nonstressed plants. At longer translocation times the rates of translocation appeared again to be more nearly equal.  相似文献   

3.
The effects of water stress on the uptake, translocation and efficacy of glyphosate in flax were investigated in relation to pre-harvest retting. Glyphosate (applied at a rate equivalent to 1.44 kg a.e. ha-1 at 0, 10, 20 or 30 days after the start of flowering) caused little desiccation of flax grown in pots under restricted watering. Glyphosate application to well-watered plants caused the moisture content to decline from an initial value of 70 – 80% to approximately 40% at 3 wk after spraying. Glyphosate was applied 2 wk after the mid-point of flowering to flax grown in soil with moisture contents of 35, 31, 26, 22, 16 or 12%. Soil moisture levels (16% and 12%) which restricted evapotranspiration also reduced the efficacy of glyphosate but did not affect uptake of 14C-glyphosate. Translocation of 14C-glyphosate out of treated leaves was reduced only in the most severely stressed plants (12% soil moisture). Experiments with young plants (4 wk old) confirmed that water stress slightly reduced downward translocation of glyphosate. When the herbicide was applied to young plants under conditions which minimised differences in translocation, 10.8 μg glyphosate was sufficient to desiccate unstressed plants but 108 μg had little effect on stressed plants. This indicates that, in addition to any reduction in translocation which occurs during drought, water stress may reduce the susceptibility of flax to glyphosate. Thus only relief of plant water stress by irrigation is likely to improve response of the flax crop to glyphosate.  相似文献   

4.
高丽  杨劼  刘瑞香 《应用生态学报》2010,21(9):2201-2208
在不同土壤水分条件下,对中国沙棘雌雄株叶片的形态结构以及生理生化特征进行了研究.结果表明: 在土壤水分条件较差时,中国沙棘雌雄株的叶片结构旱化特征较明显,并且雌株的叶片厚度、上下表皮厚度、侧脉维管束距离均较小,而下表皮毛厚度、密度和栅栏组织与海绵组织的比值均较大,表现出较强的干旱适应性和生态可塑性;雌雄株叶片的游离脯氨酸、可溶性糖和丙二醛含量升高,其中雌株叶片的游离脯氨酸和可溶性糖含量上升幅度大于雄株,而雄株叶片的丙二醛含量上升幅度明显大于雌株.随着土壤水分条件的改变,雌雄株叶片的超氧化物歧化酶和过氧化氢酶活性变化较大.在干旱胁迫下,中国沙棘雌株的生理生化指标多元隶属度值大于雄株.雌株对干旱胁迫的适应性和生理调节能力更强.  相似文献   

5.
荒漠植物种子逆境萌发研究进展   总被引:2,自引:0,他引:2  
任珺  余方可  陶玲 《植物研究》2011,31(1):121-128
对水分、温度、光照、沙埋深度、盐分胁迫及以上几种综合因素在逆境条件下对荒漠植物种子萌发的影响进行了综述。降雨次数、雨量大小、分布及土壤湿度是决定荒漠植物种子萌发的重要生态因子;温度是影响荒漠植物种子萌发的关键生态因子之一,变温有利于荒漠植物种子萌发;光照并非大多数荒漠植物种子萌发的必要条件,少部分荒漠植物种子萌发需要光照,有些要在黑暗中萌发,有些则对光照无特殊要求,光照对有些荒漠植物种子萌发有一定的抑制;不同沙埋深度具有不同的土壤湿度,土壤温度和光照等条件,综合调控荒漠植物种子的萌发;盐分胁迫抑制种子的萌发。荒漠植物种子的萌发在以上几种因素的共同协调作用下表现出一定的适应性。随着研究的不断深入和生态环境建设的需求,需要加强荒漠植物生理生态研究的深度和研究的系统性。  相似文献   

6.
The effect of moisture stress on monoterpenoid yield and composition of Satureja douglasii was studied under controlled conditions and in the field. Large differences in monoterpenoid yield observed among field populations were closely correlated with moisture stress. In greenhouse transplants grown under uniformly moist conditions these differences were significantly reduced. In all plants studied yield per leaf dry weight decreased with development. A growth chamber study using clones grown under different soil moisture regimes showed that high moisture stress reduced leaf weight and monoterpenoid yield per leaf, but had little effect on yield per leaf dry weight. Effects on monoterpenoid composition were less striking with high moisture stress causing a small decrease in the percentage of monoterpenoids with a p-menthane carbon skeleton and perhaps accelerating the rate of developmental conversions.  相似文献   

7.
The effects of moisture deficit stress, plant population density and pathogen inoculation technique on charcoal stalk rot in the sorghum hybrid CSH 6 were studied in the 1980–81 and 1981–82 post-rainy seasons at three locations in India. Incidence and severity of charcoal rot caused by Macrophomina phaseolina were compared in three plant population densities, subjected to different moisture stress regimes created by withholding irrigation at various plant growth stages. Natural infections were compared to artificial inoculation with M. phaseolina. Combinations of moisture stress, plant population and inoculation treatments were compared to identify the combination most likely to develop maximum disease. Lodging, the first external symptom of charcoal rot, was significantly correlated with other disease symptoms used to measure charcoal rot, such as soft stalk, number of nodes crossed by M. phaseolina infection, root damage and plant senescence. In both seasons the highest incidence of lodging occurred when moisture stress was induced at the 'flag leaf visible in the whorl' growth stage. The greatest incidence of the disease was recorded in the highest plant population (266 700 plant ha-) at all three locations. No significant differences were found between artificially and naturally inoculated treatments. The maximum number of lodged plants was found at a density of 266 700 plants ha-1 when moisture stress was induced at the 'flag leaf visible in the whorl' growth stage.  相似文献   

8.
We investigated the effect of water stress on yield and quality of tomato plants overexpressing Solanum lycopersicum thylakoid-bound ascorbate peroxidase gene (StAPX). APX activity, hydrogen peroxide content, net photosynthetic rate of tomato leaves, and yield and nutrition quality of tomato fruits were measured under soil moisture 70, 60, and 50 % of full field capacity. Results show that the capability of APX for scavenging hydrogen peroxide induced by water stress was higher in the transgenic than the wild type (WT) plants. The yield of fruits of the transgenic tomato plants was higher than that of WT plants under water stress and the fruit nutrition quality was not different. These results indicate that overexpression of StAPX might improve water stress tolerance in the transgenic tomato plants.  相似文献   

9.
ZHANG  JIANHUA 《Annals of botany》1996,78(5):591-598
The relative importance and interactive effects of nutrientsupply, soil moisture content and sand burial on the development,physiology, biomass allocation and fitness ofCakile edentulawere examined under controlled greenhouse conditions. Planttraits were more frequently affected by nutrient supply thanby soil moisture content or sand burial. Measurements on mostplant traits also varied depending on the two or three way interactionsamong the three environmental factors. Plants partially buriedby sand had higher leaf chlorophyll concentration than thoseunburied at the early stages of development, especially underlow soil moisture content. High nutrient supply tended to lowerthe leaf chlorophyll concentration of mature plants, and thiseffect was more pronounced under high as compared to low soilmoisture content. High nutrient supply enhanced the photosyntheticcapacity of plants when they were water stressed. With adequatesoil moisture, high nutrient supply increased/decreased thephotosynthetic capacity of plants with/without previous experienceof water stress. High nutrient supply increased the biomassallocation to the root system of plants, especially at low soilmoisture content. Partial sand burial also promoted biomassallocation to the root system of plants grown at low soil moisturecontent. Soil nutrition; water supply; sand accretion; multiple stresses; biomass allocation; Cakile edentula  相似文献   

10.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

11.
Julia Walter 《Plant Ecology》2018,219(12):1449-1462
Due to climate change, the amount, frequency, and intensity of precipitation worldwide are changing. There is increasing evidence that hydrological change severely affects species interactions and that these effects might overrule direct autecological responses, although this is currently understudied. Here, I synthesize published data on 405 interactions to show how changes in soil moisture affect the frequency or strength of plant-mediated biotic interactions. Despite substantial variation among published responses, general patterns have emerged. A recurrent finding in the synthesized studies is that dryness impedes beneficial interactions between plants and other organisms (decreased mycorrhization and infection with other symbiotic endophytes, less pollinator visits, less active decomposers) and increases detrimental interactions (increased performance of sucking insects, pathogen infection and competition between functionally similar plants). For increased wetness, which is far less studied, stress intensity seems to matter: Slightly increased precipitation often benefits plants and thereby associated interaction partners (increased mycorrhization and infection with symbiotic endophytes, increased herbivore performance), while extreme waterlogging or flooding impedes many interactions (decreased decomposer activity and mycorrhization). Legacy effects of changed soil moisture on plant community composition can amplify or reverse short-term effects on interactions. Although some concepts acknowledge the role of stress intensity (mild versus severe) and stress type (permanent versus pulsed) empirical research testing-related hypotheses is largely lacking, as is research on the role of soil moisture legacies for interactions.  相似文献   

12.
Chen PM  Li PH  Burke MJ 《Plant physiology》1977,59(2):236-239
Water supply and day length were varied in cold hardiness studies of red osier dogwood plants (Cornus stolonifera Michx.). The frost killing temperature, the content and freezing of stem cortical tissue water along with soil moisture content and tension were evaluated. Seven days of water stress in long and short day photoperiod regimes caused a rapid decrease in soil moisture content and plant water potential. During the same period, the frost hardiness increased from −3 to −11 C. Further water stress treatment had little effect. Control plants in short days showed only a gradual decrease in plant water potential and only gradually increased in frost hardiness while control plants in long days were unchanged. Freezing studies using nuclear magnetic resonance showed that increased hardiness in water-stressed plants resulted from both an increased tolerance of freezing and an increased avoidance of freezing, the latter resulting from higher solute concentration in the tissue solutions. The short day controls also showed similar changes; however, the changes were smaller over the 21 days of the study.  相似文献   

13.
Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.  相似文献   

14.
Summary Efect of sowing density on germination, establishment and growth of two perennial weeds,Eupatorium adenophorum spreng. andE. riparium Regel, was studied by sowing varying number of seeds of each species in pots. At high sowing density, seedling emergence did not proportionately increase with seed input. The yield and seed output per unit area was independent of sowing density. Survival of established plants was independent of soil moisture stress. The dry matter yield of both species declined at low moisture regime, the reduction being more inE. riparium. E. adenophorum produced more seeds at low moisture level, whileE. riparium at high moisture level. The resource allocation to roots was reduced due to moisture stress, especially inE. andenophorum.  相似文献   

15.
Four Glomus species/isolates from arid, semi-arid and mesic areas were evaluated for their effects on growth and water use characteristics of young Citrus volkameriana (′Volkamer′ lemon) under well-watered conditions, followed by three soil-drying episodes of increasing severity (soil moisture tensions of –0.02, –0.06, and –0.08 MPa) and recovery conditions. Arbuscular mycorrhizal (AM) plants were also compared to non-AM plants given extra phosphorus (P) fertilizer. AM plants and non-AM plants had similar shoot size (dry weight and canopy area), but all AM fungus treatments stimulated root growth (dry weight and length). Leaf P concentrations were 12–56% higher in AM plants than non-AM plants. Enhanced root growth was positively correlated with leaf P concentration. In general, AM plants had greater whole-plant transpiration than non-AM plants under well-watered conditions, under mild water stress and during recovery from moderate and severe soil drying. This suggests a faster recovery from moisture stress by AM plants. AM plants had lower leaf conductance than non-AM plants when exposed to severe soil drying. Although the greatest differences were between AM and non-AM plants, plants treated with Glomus isolates differed in colonization level, leaf P concentration, root length, transpiration flux and leaf conductance.  相似文献   

16.
Diurnal variations in the concentrations of major organic compounds occurred in xylem fluid extracted from Lagerstroemia indica L. The concentration of amino acids and the N/C ratio was at a maximum and that of organic acids was at a minimum between 1230 and 2030 h. Since the concentrations of total organic nitrogen, total amino acids and most individual amino acids (but not organic acids or sugars) were also proportional to xylem tension two experiments were performed to discern whether variations in chemistry were a consequence of diurnal changes in moisture stress. In the first experiment, L. indica , exposed to variable levels of moisture stress during midday, manifested an increase in organic acids and a reduction in the N/C ratio. In the second experiment, chemical profiles of xylem fluid were collected and compared for plants exposed to a natural photoperiod, constant darkness or continuous light at noon and midnight. After 1 day amino acids increased in concentration during midday for all treatments; the variation was greatest (10-fold) for plants in constant darkness where xylem tension varied from 0.20 to 0.25 MPa. Only plants exposed to continuous light lost a diurnal rhythm after 3 days. Thus, the circadian rhythm was endogenous, terminated in continuous light and was not mediated by changes in moisture stress. Glutamine accounted for most of the diurnal variation in total amino acids, organic nitrogen and the N/C ratio in xylem fluid.  相似文献   

17.
A decrease in xylem pressure potential starting 1 h after decapitation of young hybrid poplars ( Populus deltoides Bartr. × Populus nigra L. cv. DN22) reduced stomatal conductance and transpiration rates for the first 3 days after decapitation. This early moisture stress was alleviated 4 to 5 days after decapitation, resulting in substantial increases in stomatal aperture, transpiration and net photosynthetic rates which continued for the remainder of the one week measurement period. The results suggest the following sequence of events in the decapitated plant: After a brief moisture stress, decapitation increases moisture availability by increasing the root/shoot ratio and by reducing shoot competition for moisture. Improvement in hydration releases buds from apical dominance and increases stomatal conductance and rates of net photosynthesis. This, in turn, leads to the acceleration of growth observed when plants are reinvigorated by decapitation.  相似文献   

18.
Summary Male and female plants of Rumex acetosella were grown on a moisture gradient to measure possible differences in the drought tolerance of the sexes. The growth of both sexes declined under water stress but males were significantly more drought tolerant. This could not be explained by greater water use efficiency in the male plants; measured rates of both photosynthesis and leaf conductance did not differ significantly between the sexes. Multiple discriminant analysis showed that the sexes differed at all moisture regimes in their overall patterns of biomass allocation. Males had proportionately greater investment in root and leaf tissue which could explain their growth advantage over females under water stress. Despite essentially equal water use efficiencies, on a per plant basis males, with more leaf and root biomass, could fix more carbon and more rapidly exploit the local water resource than females. Thus the pattern of biomass allocation rather than intrinsic physiological differences appears to explain the greater drought tolerance of male plants of Rumex acetosella.  相似文献   

19.
Summary The effect of soil moisture tension on nitrate reductase and on nitrate accumulation in wheat plants was studied. Nitrate reductase activity was inhibited when soil moisture tension was increased to about 3.0 bars associated with a drop in leaf relative water content to about 90 per cent. The decrease in nitrate reductase activity did not result in nitrate accumulation in short-term experiments (10 days) when plants were exposed to only 1–2 cycles of elevated soil moisture tensions. However, when the period of different moisture regimes was extended up to the flag-leaf stage, nitrate accumulated in stressed plants.Significant increase in plant nitrate concentration as a result of increased moisture tensions was only found at the high levels of added nitrogen. On the other hand, moisture tensions had no effect on the content of total nitrogen in wheat shoots, implying that nitrate reduction was rather limiting under stress conditions.An effect of soil moisture tension and nitrogen nutrition on dry matter production by wheat seedlings was also found in the long-term experiment. At the highest dose of soil nitrogen an increase in maximal soil moisture tension from 0.1 to 0.33 bars reduced plant growth; at intermediate nitrogen doses only tension higher than 2 bars reduced growth. Under complete nitrogen deficiency, plant dry matter production was very low and was not affected by soil moisture tensions.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1972 Series, No. 2185-E.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1972 Series, No. 2185-E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号