首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA synthesis after the ultraviolet irradiation was followed in the excision proficient strainEscherichia coli B/rHcr +, in which the ability to excise thymin dimers was suppressed by a preirradiation inhibition of DNA and protein syntheses and in the excision deficient strainEscherichia coli B/rHcr ?. Synthesis of pulse-labeled DNA, its stability and semiconservative DNA synthesis were compared in both strains. It was found that cells of theHcr + strain restore semiconservative DNA synthesis and the pulselabeled DNA appears stable, in spite of the fact that dimers are not excised under these conditions. On the other hand, cells of theHcr ? strain are unable to restore semiconservative DNA synthesis and the pulselabeled DNA is degraded. As the repair by the excision of dimers under the used experimental conditions may be excluded in both strains, it is possible to assume that activity of enzymes included in theHcr + marker is prerequisite for restoring the DNA synthesizing system in theHcr + strain.  相似文献   

2.
3.
Certain temperature-sensitive Escherichia coli cell division mutants and DNA repair mutants were treated in several ways to alter DNA synthesis or cell division. The bacteria were pulsed with [35S]methionine; then membrane proteins were prepared and examined using sodium dodecyl sulfate/polyacrylamide slab gels. Autoradiography was performed on the slab gels so that the rate of synthesis of protein X could be determined by microdensitometry.Several changes in the rate of synthesis of the 40,000 molecular weight protein X were found in the different mutants. The wild-type (rec+ and lex+) strains synthesized protein X in response to DNA synthesis inhibition. However, neither recA? strains nor lex? strains synthesized protein X.Both the filament forming, temperature-sensitive mutants tif? and tsl? (which was derived from lex?) synthesized protein X when DNA synthesis was inhibited, but at rates different from the wild-type strains. Moreover, these strains also produced protein X at their non-permissive temperature, even though DNA synthesis was not inhibited. In the tif? mutant, the rate of synthesis of protein X was influenced by the addition of nucleic acid precursors.A double mutant tsl?recA? produced protein X when DNA synthesis was inhibited, or at the non-permissive temperature (although DNA synthesis was normal). This was the only strain carrying a recA? mutation capable of synthesizing protein X.From these results it is suggested that the genes lex, recA and tif comprise a system that controls DNA repair and limits DNA degradation by the recBC nuclease. The inducer of this control system might be a DNA degradation product.  相似文献   

4.
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA–protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo DNA polymerase (Pfu exo). The relative efficiency of Pfu exo was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo, while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.  相似文献   

5.
6.
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9 -/- MES and Mdc1 -/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9 -/- MES. As the exposure to SMG was prolonged, Rad9 -/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9 -/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1 -/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1 -/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.  相似文献   

7.
Gene 2 amber mutants of bacteriophage T4 grown on su? hosts produce whole particles of which less than 0.5% are infective on su+ hosts. Although the DNA of such particles is full-sized and un-nicked, it is degraded to acid-soluble fragments after infection of exo V+ hosts. This breakdown does not occur on exo V? deficient hosts, and such hosts are fully permissive for gene 2-defective particles. We have now determined that giant-headed, gene 2-defective particles containing several genome lengths of DNA per head are fully infective on exo V+ hosts even though part of the parental DNA is degraded to acid-soluble fragments early after infection. Restriction of gene 2-defective particles must therefore be due to exonucleolytic degradation of the incoming DNA. If the parental DNA is of sufficient length to enable a complete genome to survive this degradation before production of anti-exoV, such particles are now infective.  相似文献   

8.
Pretreatment with diethylnitrosamine or dipropylnitrosamine increased the amount of labelled O6-methylguanine found in liver DNA 4 and 24 h after injection of 10 μg/kg [3H] dimethylnitrosamine. Dibutylnitrosamine treatment had a similar, though smaller effect at 4 h but was ineffective when measurements were made 24 h after the dimethylnitrosamine was given. These pretreatments did not affect 7-methylguanine levels in the DNA showing that the metabolic conversion of dimethylnitrosamine into a methylating agent was not altered. Previous studies have shown that O6-methylguanine is rapidly removed from hepatic DNA after methylation to a small extent but removal is less efficient after higher amounts of methylation. Therefore, the most probable explanation for the present findings is that these longer dialkylnitrosamines produce a similar product in DNA which interferes with the loss of O6-methylguanine. This hypothesis was supported by experiments showing that diethylnitrosamine did give rise to O6-ethylguanine which was lost from the DNA at a rate comparable to the observed loss of O6-methylguanine in diethylnitrosamine pretreated rats. This method may, therefore, be of value for determination of whether other nitrosamines, not available in a radioactively labelled form, react with DNA at external oxygen atoms. The present results also suggest that different dialkylnitrosamines might have additive effects in prolonging damage to DNA which could be important in carcinogenesis.  相似文献   

9.
Normal preparations of B. subtilis DNA have weight average native molecular weights of 10 to 30 x 106. For any given preparation the upper and lower 95% size limits may differ by a factor of ten or more. Single-stranded molecular weights indicate an average of 1 to 4 breaks per single strand of the native DNA. The reduction in transforming activity and viscosity following DNAase I digestion can be accounted for by a direct relationship between the transforming activity of a DNA and its single-stranded molecular weight. Uptake studies with DNAase I treated heavy (2H15N 3H) DNA show that single strand breaks inhibit integration less than transformation. A provisional estimate of the size of the integrated region based on correlating the single strand size of the donor-recipient complex with the donor-recipient density differences following alkali denaturation came to 1530 nucleotides. Using a competent, nonleaky thymine-requiring strain of B. subtilis grown in 5-BU medium before and after transformation, it was shown that (a) No detectable amount of DNA synthesis is necessary for the initial stages of integration, (b) Cells which have recently been replicating DNA are not competent. (c) Cells containing donor DNA show a lag in DNA replication following transformation, (d) When donor DNA is replicated it initially appears in a density region between light and hybrid. This indicates that it includes the transition point formed at the time of reinitiation of DNA synthesis in the presence of 5-BU following transformation. A model is proposed in which donor DNA is integrated at the stationary growing point of the competent cell, which is in a state of suspended DNA synthesis.  相似文献   

10.
The incorporation of uracil into and excision from DNA were studied in vitro using lysates on cellophane discs made from Escherichia coli strains with defects in the enzymes dUTPase (dut) and uracil-DNA glycosylase (ung).Results with dut ung lysates indicate that dUTP is competitively incorporated with dTTP at the replication fork. Such incorporation is not due to DNA polymerase I. There is a mild discrimination (2.5-fold) against incorporation of dUTP versus dTTP. These data, together with in vivo uracil incorporation data (Tye et al., 1978) permit a rough estimate of the pool of dUTP in vivo (~0.5% of the dTTP pool).These in vitro data indicate that uracil-DNA glycosylase is the initial step in at least 90% of uracil excision events. However, in a strain defective in uracil-DNA glycosylase (ung-1), uracil-containing DNA is still more subject to single-strand scission than non-uracil-containing DNA, albeit at a rate at least tenfold less than in an ung+ strain.A number of qualitative statements may also be made about different steps in uracil incorporation and subsequent excision and repair events. When high levels of dUTP are added in vitro, a dut ung+ strain has a higher steady-state level of uracil in newly synthesized DNA than does an isogenic dut+ ung strain. Thus the dUTPase in these lysates has a higher capacity to be overloaded than does the excision system (i.e. uracil DNA glycosylase). However, the DNA sealing system (presumably DNA polymerase I and DNA ligase) apparently can handle all single-strand interruptions being introduced by uracil excision at the maximal rate, at least so that DNA synthesis can continue.  相似文献   

11.
Sitaraman R  Leppla SH 《Gene》2012,494(1):44-50
Bacillus anthracis, the causative agent of anthrax, is poorly transformed with DNA that is methylated on adenine or cytosine. Here we characterize three genetic loci encoding type IV methylation-dependent restriction enzymes that target DNA containing C5-methylcytosine (m5C). Strains in which these genes were inactivated, either singly or collectively, showed increased transformation by methylated DNA. Additionally, a triple mutant with an ~ 30-kb genomic deletion could be transformed by DNA obtained from Dam+Dcm+E. coli, although at a low frequency of ~ 10− 3 transformants/106 cfu. This strain of B. anthracis can potentially serve as a preferred host for shuttle vectors that express recombinant proteins, including proteins to be used in vaccines. The gene(s) responsible for the restriction of m6A-containing DNA in B. anthracis remain unidentified, and we suggest that poor transformation by such DNA could in part be a consequence of the inefficient replication of hemimethylated DNA in B. anthracis.  相似文献   

12.
In vitro selection of RNA-cleaving DNAzymes is a powerful method for isolating metal-specific DNA. A few successful examples are known, but it is still difficult to target some thiophilic metals such as Cd2+ due to limited functional groups in DNA. While using modified bases expands the chemical functionality of DNA, a single phosphorothioate modification might boost its affinity for thiophilic metals without complicating the selection process or using bases that are not commercially available. In this work, the first such in vitro selection for Cd2+ is reported. After using a blocking DNA and negative selections to rationally direct the library outcome, a highly specific DNAzyme with only 12 nucleotides in the catalytic loop is isolated. This DNAzyme has a cleavage rate of 0.12 min−1 with 10 μM Cd2+ at pH 6.0. The Rp form of the substrate is cleaved ∼100-fold faster than the Sp form. The DNAzyme is most active with Cd2+ and its selectivity against Zn2+ is over 100 000-fold. Its application in detecting Cd2+ is also demonstrated. The idea of introducing single modifications in the fixed region expands the scope of DNA/metal interactions with minimal perturbation of DNA structure and property.  相似文献   

13.
14.
The process of fixation of DNA-containing plasms is investigated by macroscopical and electron microscopical observations on solutions of DNA, nucleohistones, as well as on bacterial nuclei. The following treatments were found to produce a gelation of a solution of DNA or nucleohistones: (a) OsO4 fixation at pH 6 in the presence of amino acids (tryptone) and Ca++. (b) Exposure to aqueous solutions of uranyl acetate. (c) Exposure to aqueous solutions of indium chloride. Observed in the electron microscope, these gels show a fine fibrillar material. From experiments in which solutions of DNA or nucleohistones are mixed with bacteria and treated together, it is concluded that the behavior of the bacterial nucleoplasm is similar to that of the DNA solutions. The appearance of birefringence indicates that uranyl acetate and indium chloride produce an orientation of the molecules of a DNA solution during gelation. Bacterial chromosomes fixed by these agents also show a certain order, while those fixed by the OsO4-amino acid-Ca++ formula do not. Whether or not the order can be considered to be artificial is discussed, and a tentative conclusion is presented: (a) Uranyl acetate may induce artificial order. (b) Fixatives which do not gel DNA probably result in the grossest artifacts. (c) OsO4 fixation at pH 6 in the presence of amino acids (tryptone) and Ca++ may give the most accurate preservation of the in vivo disposition of DNA (RK+ fixation).  相似文献   

15.
16.
A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAFV600E) is tightly associated with CIMP, raising the question of whether BRAFV600E plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAFV600E. We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAFV600E causes DNA hypermethylation by stably expressing BRAFV600E in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAFV600E is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAFV600E and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAFV600E-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAFV600E-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAFV600E in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding CIMP in colorectal cancer and gaining insights into the role of aberrant DNA hypermethylation in colorectal tumorigenesis.  相似文献   

17.
We have studied the excision reaction of bacteriophage lambda, both in vivo and in vitro, using as a substrate a λatt2(L × R) phage carrying both the right and left-hand prophage attachment sites. Int and Xis are provided by induction of the heat-inducible defective prophage, λc1857 ΔH1. After a brief induction (5 min) of these cells, excisive recombination is blocked in the presence of the DNA gyrase inhibitor, coumermycin. However, after a longer induction (greater than 30 min) excisive recombination occurs efficiently under conditions where λ integrative recombination is inhibited by coumermycin. In such extensively induced coumermycin-treated cells, infecting λatt2(L × R) DNA is not supercoiled, and recombinants are found among the relaxed covalently closed circular DNA.In vitro, starting with a hydrogen-bonded λatt2 DNA substrate, excision is insensitive to high concentrations of coumermycin and novobiocin. To study the DNA substrate requirements for excisive recombination in more detail, we have developed a restriction fragment assay for excisive recombination. With this assay, we demonstrate that supercoiled, hydrogen-bonded, and linear λatt2 DNA molecules are all efficient substrates in the in vitro excision reaction. Spermidine is required but ATP and Mg2+ are not. We conclude that supercoiling is not an absolute requirement for site-specific recombination of λ.  相似文献   

18.
The E3 ubiquitin ligase CRL4Cdt2 targets proteins for destruction in S phase and after DNA damage by coupling ubiquitylation to DNA-bound proliferating cell nuclear antigen (PCNA). Coupling to PCNA involves a PCNA-interacting peptide (PIP) degron motif in the substrate that recruits CRL4Cdt2 while binding to PCNA. In vertebrates, CRL4Cdt2 promotes degradation of proteins whose presence in S phase is deleterious, including Cdt1, Set8, and p21. Here, we show that CRL4Cdt2 targets thymine DNA glycosylase (TDG), a base excision repair enzyme that is involved in DNA demethylation. TDG contains a conserved and nearly perfect match to the PIP degron consensus. TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and PIP degron-dependent manner during DNA repair in Xenopus egg extract. The protein can also be destroyed during DNA replication in this system. During Xenopus development, TDG first accumulates during gastrulation, and its expression is down-regulated by CRL4Cdt2. Our results expand the group of vertebrate CRL4Cdt2 substrates to include a bona fide DNA repair enzyme.  相似文献   

19.
20.
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N6-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N6-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N6-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N6-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N6-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号