首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.  相似文献   

2.
Under nonsterile conditions, IAA can be extracted from pea stem sections infiltrated with buffer, IAA, or tryptophan. This IAA has microbial origin, since its occurrence is prevented by antibiotics. All infiltrated IAA disappears in the sections. Under sterile conditions, several inhibitors of IAA oxidase prevent the complete disappearance of infiltrated IAA. Some of them permit, by preventing the disappearance of produced IAA, the formation in vivo of extractable IAA amounts from tryptophan. This IAA production is further increased by pyridoxal (phospbate), and by α-ketoglutarate.  相似文献   

3.
4.
The concentration of free indoleacetic acid (IAA) is high in cotton (Gossypium hirsutum L.) fruiting forms before anthesis, but is low at and for a few days after anthesis. Amide-linked and ester IAA were measured in fruiting forms at 9, 6, and 3 days before anthesis; at anthesis; and at 2, 4, 7, and 9 days after anthesis to determine if free IAA decreased because it was converted to a conjugated form. That did not appear to be the case. While the major decrease in free IAA occurred during the 6 days before anthesis, ester IAA increased only a small amount and amide-linked IAA decreased even more than free IAA. During the 6 days before anthesis free IAA decreased from 0.62 to 0.12 micrograms per gram and amide-linked IAA decreased from 19.14 to 1.16 micrograms per gram dry weight. No evidence was found that a large amount of amide-linked IAA was converted to an insoluble form; flowers contained less than 1 microgram per gram of insoluble IAA. The free and amide-linked IAA must have been converted to other forms, perhaps by oxidation. Soluble amide-linked IAA remained low after anthesis. No ester IAA was detected 6 days before anthesis and only 0.08 microgram per gram dry weight was measured at anthesis. The concentration of ester IAA increased thereafter to 4.43 micrograms per gram at 9 days after anthesis. Therefore, amide-linked IAA was the major form of IAA in flower buds and ester IAA was the major form in young fruits (bolls). Minimum concentrations of free and total IAA occurred during the 4 days after anthesis, a stage when cotton fruiting forms are most likely to abscise. The large decreases in free and amide-linked IAA during the 6 days before anthesis may indicate a rapid turnover of IAA in flower buds. But, the decrease in free IAA was not accompanied by a comparable increase in ester or amide-linked IAA.  相似文献   

5.
Degradation of Aux/IAA proteins which are triggered by the ubiquitin ligase complex containing the auxin F-box receptors (AFBs), is thought to be the primary reaction of auxin signaling. Upon auxin perception, AFBs bind domain II of Aux/IAA proteins that is conserved in most of the 29 family members in Arabidopsis. However, IAA20 and IAA30 lack domain II. Furthermore, IAA31, which forms a single clade with IAA20 and IAA30 in Aux/IAA protein family, has a partially conserved domain II, which contains an amino acid substitution that would cause a dominant mutation of Aux/IAA genes. It has been shown that the half-lives of these proteins are much longer than those of the canonical Aux/IAA proteins. We generated overexpression lines (OXs) of IAA20 , IAA30 and IAA31 by the use of cauliflower mosaic virus 35S promoter to better understand the molecular function of atypical Aux/IAA proteins in Arabidopsis. OXs of the three genes exhibited similar auxin-related aberrant phenotypes, with IAA20 OX showing the most severe defects: Some of them showed a semi-dwarf phenotype; gravitropic growth orientation was often affected in hypocotyl and root; vasculature of cotyledons was malformed; the primary root stopped growing soon after germination because of collapse of root apical meristem. IAA 20 and IAA30 were early auxin inducible, but IAA31 was not. These results showed that the wild-type genes of the three Aux/IAAs could disturb auxin physiology when ectopically overexpressed.  相似文献   

6.
Tuberose (Polianthes tuberosa L. cv. Double) corms at the vegetative, early floral initiation, and flower bud differentiation stages were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. The corms in the vegetative stage contained higher free IAA than those from the early floral initiation stage. Free IAA in corm tissues increased 2.7-fold at flower bud differentiation as compared to the vegetative stage. In the vegetative corms, a marked promotion of leaf differentiation was recorded. In contrast, corms from the early floral initiation stage contained less free IAA, whereas esterified IAA and peptidyl IAA increased dramatically. It is concluded that the level of free IAA in vegetative corms is correlated with leaf differentiation, and that the early floral initiation stage is correlated with a reduction in free IAA and an increase in IAA conjugates in the corms. Moreover, increases in free IAA and decreases in IAA conjugates in the floral differentiation stage, as compared to the early floral initiation stage, indicates that free IAA is correlated with flower development.  相似文献   

7.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:8,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

8.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

9.
10.
Iino M  Carr DJ 《Plant physiology》1982,69(4):950-956
Procedures for estimating free indoleacetic acid (IAA extracted from tissue homogenates by aqueous acetone), conjugated IAA (extracted by aqueous acetone and hydrolyzed by 1 n KOH), and diffusible IAA (diffused from the excised tissue into water), in shoots of etiolated 3-day-old maize (Zea mays L. cv. GH 390) seedlings are described, the indolo-alpha-pyrone fluorescence method being used to assay IAA. The reliability of the procedure is shown by comparative IAA determinations of the extracts using the gas chromatography-mass spectrometry method in which the methyl ester, heptafluorobutyryl derivative of IAA is assayed using the selected-ion-monitoring technique with deuterated IAA as an internal standard. A 3-millimeter-long coleoptile tip, a coleoptile with its included leaves and nodal region (whole coleoptile), and a mesocotyl each contains 0.2, 1.7, and 1.5 nanograms of free IAA, respectively. The whole coleoptile and the mesocotyl contain slightly less conjugated IAA than their content of free IAA. IAA diffuses from the coleoptile tip at the rate of 1.0 nanograms per tip per hour; from the base of the whole coleoptile and a set of leaves excised from a coleoptile, IAA diffuses at the rate of 0.62 and 0.17 nanogram per plant part per hour, respectively. The data obtained support the classical assumption that the coleoptile tip produces IAA. It is also suggested that some IAA is decomposed during its downward transport in the coleoptile.  相似文献   

11.
To investigate the distribution of IAA (indole-3-acetic acid) and the IAA synthetic cells in maize coleoptiles, we established immunohistochemistry of IAA using an anti-IAA-C-monoclonal antibody. We first confirmed the specificity of the antibody by comparing the amounts of endogenous free and conjugated IAA to the IAA signal obtained from the IAA antibody. Depletion of endogenous IAA showed a corresponding decrease in immuno-signal intensity and negligible cross-reactivity against IAA-related compounds, including tryptophan, indole-3-acetamide, and conjugated-IAA was observed. Immunolocalization showed that the IAA signal was intense in the approximately 1 mm region and the outer epidermis at the approximately 0.5 mm region from the top of coleoptiles treated with 1-N-naphthylphthalamic acid. By contrast, the IAA immuno-signal in the outer epidermis almost disappeared after 5-methyl-tryptophan treatment. Immunogold labeling of IAA with an anti-IAA-N-polyclonal antibody in the outer-epidermal cells showed cytoplasmic localization of free-IAA, but none in cell walls or vacuoles. These findings indicated that IAA is synthesized in the 0–2.0 mm region of maize coleoptile tips from Trp, in which the outer-epidermal cells of the 0.5 mm tip are the most active IAA synthetic cells.  相似文献   

12.
We wished to determine the effect of endosperm removal on the amounts of free and esterified indole-3-acetic acid (IAA) in young Zea mays seedlings. The increases of IAA derived from endosperm and from biosynthesis, but without correction for catabolic losses, were 0.9 picomole of free IAA per shoot per hour, and 1.1 picomoles per shoot per hour of ester IAA. After deseeding, free IAA in the shoot declines by 40% following kernel removal and total (free + ester) IAA declines at a rate of about 1 picomole per shoot per hour. A slight, but insignificant increase of ester IAA occurs following endosperm removal. In the primary roots, the decreases of free IAA and total (free + ester) IAA are accelerated by seed removal. Thus, the endosperm appears to be a major source of IAA for the shoot and root.  相似文献   

13.
Lee TT 《Plant physiology》1977,59(3):372-375
7-Hydroxy-2,3-dihydrobenzofuran derivatives, metabolites of a carbamate insecticide carbofuran, and five other phenolic inhibitors of indoleacetic acid (IAA) oxidase interfered with IAA-induced spectral change in the Soret band of horseradish peroxidase (HRP). The onset of IAA degradation required transformed HRP intermediates. The inhibitors, when added before IAA, protected HRP from reacting with IAA, thus preventing formation of highly reactive enzyme intermediates, and consequently, IAA degradation. When added after IAA, the inhibitors quickly reversed the IAA-induced spectral change of HRP and inhibited further IAA degradation.  相似文献   

14.
《Phytochemistry》1987,26(5):1251-1255
An enzyme-linked immunosorbent assay (ELISA) for indole-3-acetic acid (IAA) is described which uses antibodies raised against IAA conjugated to carrier protein on the indolic ring of IAA. As little as 0.5 pmol of IAA is detectable with the ELISA. There is no significant cross-reactivity with amide conjugates of IAA and samples do not need methylation, in contrast to an ELISA using antibodies raised against carboxyl-linked IAA. Affinity chromatography on IAA-agarose was used to purify antibody preparations. Measurements of IAA levels in crown gall tumour tissue lines were made using the assay.  相似文献   

15.
Plots of reaction rate versus substrate concentration of the enzymatic decarboxylation of IAA yield sigmoid, rather than the usual, hyperbolic curves, suggesting that the IAA oxidase of cabbage roots is an allosteric enzyme. The quantity of this enzyme in roots is so high that the IAA concentration is likely to limit IAA degradation in intact cells. Thus, variations in the level of this enzyme seem not to be essential for the regulation of the endogenous IAA concentration. Cabbage roots contain substances that can inhibit IAA oxidase. These substances are spatially separated from IAA oxidase in intact cells, but the same inhibitors are able to reach the enzyme when added exogenously to tissue segments. The possibility that added IAA is treated by tissue segments in another manner than endogenous IAA is discussed.  相似文献   

16.
Different concentrations of indole-3-acetic acid (IAA) were applied in lanolin to 1-year-old shoots of Pinus sylvestris (L.) in a manner known to stimulate cambial activity. The internal concentration of free IAA was measured at a distance below the application point by combined gas chromatography-selected ion monitoring-mass spectrometry using [13C6]IAA as a quantitative internal standard, and related to the production of tracheids at the same site. The experiment was performed with: (a) debudded cuttings, where the major source of endogenous IAA, the apical buds, were replaced with exogenous IAA, and (b) intact, attached shoots, where endogenous IAA was supplemented by applying IAA around the circumference of the shoot. In both experimental systems, an increase in the internal IAA level was positively related to increased tracheid production. It was also demonstrated that the concentration of internal IAA measured at the sampling site was comparable with endogenous IAA levels found in intact control shoots, and that a wide range of applied IAA concentrations was associated with a relatively small range of internal IAA levels.  相似文献   

17.
18.
The pool of amide-linked indole-3-acetic acid (amide IAA) in the shoot of growing etiolated seedlings of Zea mays increases between the 3rd and 5th day of germination to equal the amount of free IAA and two-thirds the amount of ester IAA. Deseeding the germinant changes the pool size of free and amide IAA in a manner suggestive of conversion of endogenous free IAA to amide IAA. Deseeding also caused an almost total disappearance of amide IAA from the root, demonstrating that the pool of amide IAA is not inert and can be actively metabolized in young Z. mays seedlings.  相似文献   

19.
Both N-1-naphthylphthalamic acid (NPA) and methyl-2-chloro-9-hydroxyfluorene-9-carboxylic acid (CF) inhibit the polar transport of indole-3-acetic acid (IAA) and, therefore, are attractive tools for investigating IAA's role in the regulation of plant growth. Ringing an intact conifer shoot with lanolin containing NPA or CF induces the formation of compression wood above the ring. This induction has been attributed to a postulated accumulation of IAA above the application site of the IAA transport inhibitor, but the validity of this postulation has never been confirmed. Using gas chromatography-selected ion monitoring-mass spectroscopy with [13C6]IAA as an internal standard, we measured the levels of endogenous free and conjugated IAA in 1-year-old Pinus sylvestris (L.) shoots ringed with NPA or CF. The level of free IAA was dramatically decreased below the ring, indicating that the polar transport of endogenous IAA was inhibited by the treatment. However, the free IAA level above the ring, where compression wood was formed, was also slightly lower than in control shoots. The lack of IAA accumulation above the site of the IAA transport inhibitor could not be explained by an increase in IAA conjugation. Furthermore, the turnover of [2-14C]IAA, measured using high-performance liquid chromatography with on-line radioactivity monitoring, was the same in NPA-treated and control shoots. The decrease in IAA level above a NPA or CF ring is attributed to these substances being transported acropetally and interfering with polar IAA transport along the shoot. It is concluded that compression wood formation above a NPA or CF ring is not associated with an overall increase in cambial region IAA level or increased IAA turnover. Instead, we suggest that acropetally transported NPA and CF induce compression wood formation by interacting with the NPA receptor in differentiating tracheids, thereby locally increasing IAA in these cells.  相似文献   

20.
Induction of indoleacetic Acid synthetases in tobacco pith explants   总被引:5,自引:4,他引:1       下载免费PDF全文
Cheng TY 《Plant physiology》1972,50(6):723-727
Formation of indoleacetic acid synthetases in tobacco pith explants was determined by following the growth of tissue cultures under conditions of indole-3-acetic acid (IAA) deprivation and by measuring the enzymatic conversion of tryptophan to IAA in the cultures. The pith explants obtained from the parent plant (Nicotiana glauca) and from basal regions of the tumor-prone hybrid (N. glauca × N. langsdorffii) both show a requirement for exogenous IAA for growth initiation in culture. The parent pith requires the constant presence of added IAA for continued growth, but hybrid pith, after initial treatment with IAA, will grow without further additions. IAA synthetases are detected in the cell homogenates of hybrid pith explants cultured with either continuous or initial IAA addition. These observations indicate that IAA may induce its own production. In contrast, IAA synthetases are not found in the parent pith under comparable culture conditions. Besides IAA, nonhormonal compounds such as indole and tryptophan are also capable of stimulating growth of hybrid pith, possibly through the induction of IAA synthetases needed for IAA formation. Indole and tryptophan are, however, inactive in growth promotion of the parent pith. These results suggest that the genomic expression of IAA synthetase formation is more stringently controlled in N. glauca than in the tumorprone hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号