首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behaviour of two chromosome structures in silver-stained chromosomes was analyzed through the first meiotic division in spermatocytes of the acridoid species Arcyptera fusca. Results showed that at diakinesis kinetochores and chromatid cores are individualized while they associate in bivalents of metaphase I; only kinetochores and distal core spots associate in the sex chromosome. Metaphase I is characterized by morphological and localization changes of both kinetochores and cores which define the onset of anaphase I. These changes analyzed in both autosomes and in the sex chromosome allow us to distinguish among three different substages in metaphase I spermatocytes. B chromosomes may be present as univalents, bivalents, or trivalents. Metaphase I B univalents are characterized by separated cores except at their distal ends and individualized and flat sister kinetochores. At anaphase I sister kinetochores of lagging B chromatids remain connected through a silver-stained strand. The behaviour of cores and kinetochores of B bivalents is identical with that found in the autosomal bivalents. The differences in the morphology of kinetochores of every chromosome shown by B trivalents at metaphase I may be related to the balanced forces acting on the multivalent. The results show dramatic changes in chromosome organization of bivalents during metaphase I. These changes suggest that chromatid cores are not involved in the maintenance of bivalents. Moreover, the changes in morphology of kinetochores are independent of the stage of meiosis but correlate with the kind of division (amphitelic-syntelic) that chromosomes undergo.  相似文献   

2.
The karyotype of Nodipecten nodosus (Bivalvia: Pectinidae)   总被引:1,自引:0,他引:1  
Pauls  E.  Affonso  P. R. A. M. 《Hydrobiologia》2000,420(1):99-102
Earlier karyotypical work on Nodipecten nodosus embryos indicated that this species has a diploid number of 38, with six pairs respectively of metacentric and submetacentric chromosomes and seven pairs of subtelocentric chromosomes, although there were some difficulties in obtaining complete metaphases. The present work provides additional results on specific regions of the chromosomes in N. nodosus and, by meiotic studies, confirms the chromosome number with more reliability. Active nucleolar organizer regions (NOR), detected in mitotic metaphases from embryos, can be characterized in N. nodosus by a high level of heteromorphism of NOR-sites, indicating that these regions are not appropriate as chromosomal markers in this species. The procedure for detecting constitutive heterochromatin of chromosomes allowed us to observe most of the heterochromatic blocks at a pericentromeric position and some at telomeric and interstitial positions. The analysis of meiotic chromosomes from gonad tissue revealed the presence of 19 bivalents during metaphase I, all homomorphic and isopicnotic, confirming the previously described diploid chromosomal number of 38 for N. nodosus. From these results, some evolutionary aspects of the Pectinidae are briefly discussed.  相似文献   

3.
Using living spermatocyte cultures of the grasshopper Melanoplus differentialis three experiments were successfully carried out in which bivalents were interlocked at metaphase I, using a micromanipulator. Two rod-shaped bivalents, with terminal kinetochores, were each made unipolar to opposite poles and placed together in such a way that each put tension upon the other when pulled by its sets of spindle fibers. The experiments unambiguously demonstrated and supported the importance of physical tension in maintaining metaphase I coorientation stability. In two of these experiments the interlocked structures remained stable for 168 and 100 minutes prior to anaphase I separation. In the third experiment, following 25 minutes stability under tension the two bivalents pulled apart. No longer under tension, each bivalent reoriented within 15–30 min, became bipolar, and congressed.  相似文献   

4.
Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.  相似文献   

5.
The administration of 40° C heat-treatments was found to induce bivalent orientational instability and interlocking at male meiosis in the locust Locusta migratoria. Only the longest members of the complement showed orientational instability and these usually possessed single distally sited chiasmata, with near-maximal intercentromeric distances. An effect on the stability of spindle fibre microtubule association, or attachment to the chromosome, is considered to be a possible explanation of the behaviour found. Bipolar orientation was generally achieved prior to anaphase I so that chromosome segregation was usually normal. Diamphitelic bivalents provided the most common exception to this rule. They sometimes lagged at anaphase, with the separation of half-bivalents and the production of structures indistinguishable from lagging univalents. The bivalent interlocking also involved the longest members of the complement. Most combinations of rod/rod, rod/ring and ring/ring types of interlocking were found. Usually only two bivalents were interlocked in any one cell, although occasionally three were found interlocked. All types appeared to involve an effect on the regulation of chromosome pairing, although at least one of the cells found showed interlocking caused by the metaphase orientational instability. In most cells, interlocked bivalents showed stable orientation and this usually involved the unipolar orientation of each bivalent's two centromeres. Such configurations provide concrete support for the importance of physical tension in the maintenance of metaphase orientational stability. They lead to double non-disjunction at anaphase I. Interlocked bivalents showed normal congression to a mid-equatorial position with no tendency for the re-adjustment of arm ratios to equalise centromere distances from the poles. This behaviour is discussed in relation to spindle fibre dynamics and it is concluded that no hypothesis of congression currently available can satisfactorily explain all that we know of the behaviour of univalents, bivalents, multivalents and interlocked bivalents.  相似文献   

6.
Meiotic behaviors and reproductive modes of Japanese Isoetes were studied. The hexaploid (2n = 66) and the octaploid (2n = 88) of I. japonica consistently formed 33 and 44 bivalents, respectively, at diakinesis and/or metaphase I in both micro- and megaspore mother cells. The tetraploid (2n = 44) of I. sinensis formed 22 bivalents and its hexaploid made 33 bivalents in both types of spore mother cells. At diakinesis and/or metaphase I of microspore mother cells in I. asiatica with 2n = 22, 11 bivalents were detected. Because behaviors of meiosis in all cytotypes mentioned above were quite regular and plants yielded normal-appearing spores, they should reproduce sexually. Aneuploids of I. japonica with 2n = 87 formed 43 bivalents and one univalent, and I. sinensis with 2n = 65 formed 32 bivalents and one univalent in microspore mother cells. Meiosis of both cytotypes was almost regular and yielded microspores of normal appearance. In the heptaploid (2n = 77) of I. japonica, a configuration of 22 bivalents and 33 univalents was detected in micro- and megaspore mother cells, and various irregularities were observed throughout the meiotic divisions. Therefore, the genomic formula of the heptaploid is symbolized as AABBCDE, and the heptaploid is a sterile F, hybrid between the hexaploid (AABBCC) and the octaploid (AABBDDEE) of I. japonica. Since diploid and even-numbered polyploids regularly formed bivalents and odd-numbered ones displayed irregularities, allopolyploidy should act as a significant speciation mechanism in this genus.  相似文献   

7.
In Crotalaria juncea (n=8) a plant exhibiting partial asynapsis was isolated in the M1 of a combined treatment of 50 kR gamma rays +0.2% EMS. The majority (48.14%) of PMCs at diplotene, diakinesis and metaphase I had 16 univalents. The bivalents in the asynaptic mutant were always rod-shaped with one terminal chiasma. In comparison, controls had on the average 7.08 ring bivalents. The asynapsis is genetically controlled, monofactorially recessive, and it is concluded that chromosome pairing is interrupted at a very early stage. There is a possible correlation between the number of bivalents and the arrangement of the univalents at metaphase I. When there were less than four bivalents, the univalents tended to be polar, and when there were more than four, the univalents were more equatorial in arrangement. The arrangement of univalents was random and apparently not influenced by the bivalents, when their number (4) was exactly half the zygotic number.  相似文献   

8.
A. Davies  G. Jenkins  H. Rees 《Genetica》1990,82(2):103-110
The chromosomes of the two closely related diploid species, Gibasis consobrina and G. karwinskyana (Commelinaceae; 2n=2x=10), are morphologically alike, yet form few chiasmate associations at metaphase I in the f1 hybrid. During meiotic prophase, however, synaptonemal complexes join the majority of the chromosomes of the complement in complex multiple pairing configurations. The F1 hybrid between different tetraploid genotypes of the same two species similarly forms multivalents during meiotic prophase, which are subsequently eliminated in favour of strictly homologous bivalents before metaphase I. One quadrivalent comprising interchange chromosomes inherited from one of the parents, usually persists to first metaphase. Evidently the resolution of multivalents to bivalents at first metaphase, which accounts for diploidisation, is not attributable to the elimination of multivalents per se, but of multivalents comprising chromosomes of limited homology.  相似文献   

9.
The location of heterochromatin in the chromosomes of Petunia hybrida (2n=14) is presented. C-banded mitotic metaphase chromosomes and carmine-stained pachytene bivalents have been studied. It is shown that the heterochromatin is predominantly located near the centromeres and at the secondary constrictions of the satellite chromosomes. The distribution of chromomeres in pachytene bivalents also reveals that heterochromatin is not restricted to distinct blocks, as is the case in tomato, but occurs in smaller chromomeres which gradually decrease in size towards the ends. Conspicuous telomeres have not been observed. Both C-banding technique and pachytene analysis demonstrate large variation of heterochromatin between different lines of Petunia. The study of pachytene morphology has been hampered by a high degree of non-specific stickiness of the bivalents. Both techniques prove to be unsuitable tools for large-scale chromosome identification of Petunia lines.  相似文献   

10.
Kinetochore microtubule numbers of different sized chromosomes   总被引:5,自引:4,他引:1       下载免费PDF全文
For three species of grasshoppers the volumes of the largest and the smallest metaphase chromosome differ by a factor of 10, but the microtubules (MTs) attached to the individual kinetochores show no corresponding range in numbers. Locusta mitotic metaphase chromosomes range from 2 to 21 μm, and the average number of MTs per kinetochore is 21 with an SD of 4.6. Locusta meiotic bivalents at late metaphase I range from 4 to 40 μm(3), and the kinetochore regions (= two sister kinetochores facing the same spindle pole) have an average of 25 kinetochore microtubules (kMTs) with an SD of 4.9. Anaphase velocities are the same at mitosis and meiosis I. The smaller mitotic metaphase chromosomes of neopodismopsis are similar in size, 6 to 45 μm(3), to Locusta, but they have an average more kMTs, 33, SD = 9.2. The four large Robertsonian fusion chromosomes of neopodismopsis have an average of 67 MTs per kinetochore, the large number possibly the result of a permanent dicentric condition. Chloealtis has three pairs of Robertsonian fusion chromosomes which, at late meiotic metaphase I, form bivalents of 116, 134, and 152 μm (3) with an average of 67 MTs per kinetochore similar to Locusta bivalents, but with a much higher average of 42 MTs per kinetochore region. It is speculated that, in addition to mechanical demands of force, load, and viscosity, the kMT numbers are governed by cell type and evolutionary history of the karyotype in these grasshoppers.  相似文献   

11.
A detailed analysis, using a modified silver staining technique which permits the visualization of the chromatid cores in bivalents at metaphase I, shows that some so-called chromosome associations are indeed true chiasmata. This study employs a supernumerary segment on the longest of the autosome pairs in the grasshopper Chorthippus jucundus that produces clear asymmetric bivalents in heterozygotes. Clear evidence of crossing over within the supernumerary segment explains part of the polymorphism of this segment, since unequal crossing over can produce different-sized segments. The origin of this segment and its mode of inheritance are also considered in the light of these results.  相似文献   

12.
S. A. Henderson 《Chromosoma》1988,96(5):376-381
A survey of natural populations of the British ladybird Exochomus quadripustulatus revealed the presence of a single large, acrocentric, supernumerary (B) chromosome in all sites visited. Studies were confined to male meiosis, where more than one B was never found to accompany the six bivalents and neo-XY sex pair. The percentage of males possessing B chromosomes varied from 6.4% to 28.6% in 14 different populations. The sex ratios present in these populations also varied. In some equal numbers of males and females were present, in others there were significant excesses of females. A linear regression was found between the percentage of B chromosomes and the percentages of males and females in those populations. It is suggested that the B chromosomes are not in themselves responsible for the sex ratio differences found for similar differences in sex ratio have been found in related neo-XY species lacking B chromosomes. It is more likely that those factors affecting sex ratio are also responsible for affecting the frequencies of B chromosomes in different populations.  相似文献   

13.
M. Diez  M. J. Puertas 《Chromosoma》1981,84(3):431-437
The formation of chiasmata in six full sib male partially asynaptic individuals of Locusta migratoria has been studied. The mean chiasma frequency per cell was 2.3 both at diplotene and metaphase I. Chiasmata tended to be distributed evenly among the bivalents. The frequency and distribution of the chiasmata in each type of bivalent (L, M, or S) depended on the level of asynapsis and on interference between the bivalents. Short bivalents were the most affected by interference, while M bivalents associated independently of L and S bivalent behaviour.  相似文献   

14.
This article reviews the historical development of cytology and cytogenetics in Arabidopsis, and summarizes recent developments in molecular cytogenetics, with special emphasis on meiotic studies. Despite the small genome and small chromosomes of Arabidopsis, considerable progress has been made in developing appropriate cytogenetical techniques for chromosome analysis. Fluorescence in situ hybridization (FISH) applied to extended meiotic pachytene chromosomes has resulted in a standardized karyotype (idiogram) for the species that has also been aligned with the genetical map. A better understanding of floral and meiotic development has been achieved by combining cytological studies, based on both sectioning and spreading techniques, with morphometric data and developmental landmarks. The meiotic interphase, preceding prophase I, has been investigated by marking the nuclei undergoing DNA replication with BrdU. This allowed the subclasses of meiotic interphase to be distinguished and also provided a means to time the duration of meiosis and its constituent phases. The FISH technique has been used to analyse in detail the meiotic organization of telomeres and centromeric regions. The results indicate that centromere regions do not play an active role in chromosome pairing and synapsis; however, telomeres pair homologously in advance of general chromosome synapsis. The FISH technique is currently being applied to analysing the pairing and synapsis of interstitial chromosome regions through interphase and prophase I. FISH probes also allow the five bivalents of Arabidopsis to be identified at metaphase I and this has permitted an analysis of chiasma frequencies in individual bivalents, both in wild-type Arabidopsis and in two meiotic mutants.  相似文献   

15.
A. Davies  G. Jenkins  H. Rees 《Chromosoma》1990,99(4):289-295
Lotus corniculatus L. (Fabaceae) is a natural tetraploid of probably hybrid origin, which regularly forms bivalents at metaphase I of meiosis. Whole-mount surface-spreading of synaptonemal complexes (SCs) under the electron microscope reveals that diploidisation of this spccies is achieved not by exclusive pairing of homologues during meiotic prophase, but by the elimination of multivalents in favour of bivalents before metaphase I. Observations show that 43% of multivalents are eliminated between zygotene and pachytene, presumably by dissolution and reassembly of SCs between homologous chromosomes. A further 63% are eliminated between pachytene and diakinesis, with a commensurate increase in the number of univalents. Elimination ensures few multivalents reach first metaphase and effectively diploidises this tetraploid.  相似文献   

16.
Summary Meiotic associations of different wheat-Aegilops variabilis and wheat-Ae. kotschyi hybrid combinations with low and high homoeologous pairing were analyzed at metaphase I. Five types of pairing involving wheat and Aegilops genomes were identified by using C-banding. A genotype that seems to promote homoeologous pairing has been found in Ae. variabilis var. cylindrostachys. Its effect is detectable in the low pairing hybrids but not in the high ones. Pairing affinity has been analyzed on the basis of metaphase I associations in the low and high homoeologous pairing hybrids, and in bivalents and multivalents in the high pairing hybrids. The results indicate that the amount of bound arms of each type of identifiable association relative to the total associations formed (relative contribution) was not maintained, either between the different levels of pairing (low and high) or between different meiotic configurations (bivalents and multivalents). These findings seem to indicate that quantifications of genomic relationships based on the amount of chromosome pairing at metaphase I must be carefully done in this type of hybrid combinations.  相似文献   

17.
At metaphase I during spermatogenesis in Mesostoma ehrenbergii ehrenbergii (2 × = 10), 3 bivalents and 4 univalents form. The bivalents each have a single distally localised chiasma. Electron microscope serial section reconstructions have shown that 3 short pieces of synaptonemal complex (SC) are present in pachytene nuclei in the testis. All the SC is contained in a lobe which is separated by an invagination from the main body of the nucleus. The SC pieces vary in length from approximately 2 m to 5 m, and the greatest amount found in one nucleus was approximately 13 m. It is proposed that the pieces of SC correspond to the paired regions of the 3 bivalents present at metaphase I. This system is therefore an example of localised pairing leading to localised chiasmata. Later prophase stage nuclei have also been reconstructed, in which stacks of polycomplex are present but no SC has been found. The polycomplex is thought to be an association of discarded SC sub-units.  相似文献   

18.
2B rye plants selected for high (H) or low (L) B transmission rate were studied at pachytene and metaphase I of meiosis to determine the relationship between synapsis, bivalents at metaphase I, and B transmission rate. The results show that the 2 B chromosomes (Bs) form bivalents at pachytene in both the H and L lines, whereas the frequency of bivalents at metaphase I is much higher in the H than in the L line. This demonstrates that B transmission is mainly related to the proper association of Bs at metaphase I, as well as that synapsis of the 2 Bs in the L line is normal, but the bivalent is not consolidated by a chiasma in most cases. Crosses were made between 2B plants of the H and L lines in all combinations (H x H, H x L, L x H, and L x L) to obtain 4B plants. Similarly, bivalent formation at pachytene and metaphase I was studied. The results show that 4B plants of the H x H and L x L classes differ significantly at pachytene and metaphase I since the former forms more bivalents. The heterozygous 4 Bs of the H x L and L x H classes show intermediate values. The relation H x H > H x L > L x H > L x L was consistently found for the variables transmission rate, bivalents at pachytene, bivalents at metaphase I, and B mean chiasma frequency. A maternal effect was also found. Our data suggest that there are two separate mechanisms acting upon synapsis and chiasma formation in H and L B chromosomes: (i) there is variable efficiency of the control of synapsis at early stages of meiosis; and (ii) there is variable efficiency of the control of the number of chiasmata.  相似文献   

19.
Panuganti N. Rao 《Genetica》1969,40(1):417-420
Chromosome behaviour at metaphase I and anaphase I of meiosis inEleutherine plicata Herb. (2n=14) is studied. Cells with chromosome associations comprising an association of four long chromosomes, in addition to five bivalents were observed more frequently than those with seven bivalents. it is concluded that the ring of four is due to a segmental interchange between the two long non-homologous chromosome pairs. The ring of four at anaphase I showed delayed disjunction, bridge formation and irregular separation of chromosomes in a number of cells while the behaviour of the other bivalents was normal.  相似文献   

20.
Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid (3x = 39 chromosomes, AAD) between tetraploid Gossypium hirsutum (4n = 2x = 52,AADD) and diploid G. arboreum (2n = 2x = 26,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the hybrid. However, only 28% of the PMCs had this expected configuration. The rest of the PMCs had between 8 and 12 bivalents and between 12 and 17 univalents. Univalents lagged at anaphase I, and at metaphase II one or a group of univalents remained scattered in the cytoplasm and failed to assemble at a single metaphase plate. Primary bipolar spindles organized around the bivalents and multivalents. In addition to the primary spindle, several secondary and smaller bipolar spindles organized themselves around individual univalents and groups of univalents. Almost all (97%) of the PMCs showed secondary spindles. Each spindle functioned independently and despite their multiple numbers in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号