首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E6 and the E7 proteins of the oncogenic human papillomavirus types 16 and 18 can stably associate with p53 and the retinoblastoma protein, respectively. The E6-p53 interaction results in the accelerated degradation of p53 in vitro via the ubiquitin-dependent proteolysis system. In this study we demonstrate that a fusion protein consisting of the N-terminal half of the HPV-16 E7 protein and the full length HPV-16 E6 protein promotes the in vitro degradation of the retinoblastoma protein. This indicates that the property of the HPV-16 E6 protein to stimulate the degradation of p53 can be targeted to other proteins. Unlike the HPV-16 or HPV-18 E6 protein, the E6 proteins of HPV-6 and 11 do not bind to p53 and consequently do not target p53 for degradation. Analogous E7-E6 fusion proteins using the E6 proteins of HPV-6 and HPV-11, however, also have the ability to promote the degradation of the retinoblastoma protein, indicating that the property to target associated proteins for degradation is shared by the anogenital specific HPV E6 proteins.  相似文献   

2.
The E6 oncoproteins encoded by the cancer-associated human papillomaviruses (HPVs) can associate with and promote the degradation of wild-type p53 in vitro. To gain further insight into this process, the ability of HPV-16 E6 to complex with and promote the degradation of mutant forms of p53 was studied. A correlation between binding and the targeted degradation of p53 was established. Mutant p53 proteins that bound HPV-16 E6 were targeted for degradation, whereas those that did not complex HPV-16 E6 were not degraded. Since the HPV-16 E6-promoted degradation involves the ubiquitin-dependent proteolysis pathway, specific mutations were made in the amino terminus of p53 to examine whether the E6 targeted degradation involved the N-end rule pathway. No requirement for destabilizing amino acids at the N terminus of p53 was found, nor was evidence found that HPV-16 E6 could provide this determinant in trans, indicating that the N-terminal rule pathway is not involved in the E6-promoted degradation of p53.  相似文献   

3.
A general theme that has emerged from studies of DNA tumor viruses is that otherwise unrelated oncoproteins encoded by these viruses often target the same important cellular factors. Major oncogenic determinants for human adenovirus type 9 (Ad9) and high-risk human papillomaviruses (HPV) are the E4-ORF1 and E6 oncoproteins, respectively, and although otherwise unrelated, both of these viral proteins possess a functional PDZ domain-binding motif that is essential for their transforming activity and for binding to the PDZ domain-containing and putative tumor suppressor protein DLG. We report here that the PDZ domain-binding motifs of Ad9 E4-ORF1 and high-risk HPV-18 E6 also mediate binding to the widely expressed cellular factor MUPP1, a large multi-PDZ domain protein predicted to function as an adapter in signal transduction. With regard to the consequences of these interactions in cells, we showed that Ad9 E4-ORF1 aberrantly sequesters MUPP1 within the cytoplasm of cells whereas HPV-18 E6 targets this cellular protein for degradation. These effects were specific because mutant viral proteins unable to bind MUPP1 lack these activities. From these results, we propose that the multi-PDZ domain protein MUPP1 is involved in negatively regulating cellular proliferation and that the transforming activities of two different viral oncoproteins depend, in part, on their ability to inactivate this cellular factor.  相似文献   

4.
The E6 proteins from cervical cancer-associated human papillomavirus (HPV) types such as HPV type 16 (HPV-16) induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. We have previously shown that human mammary epithelial cells (MECs) immortalized by HPV-16 E6 display low levels of p53. HPV-16 E6 as well as other cancer-related papillomavirus E6 proteins also binds the cellular protein E6BP (ERC-55). To explore the potential functional significance of these interactions, we created and analyzed a series of E6 mutants for their ability to interact with E6-AP, p53, and E6BP in vitro. While there was a similar pattern of binding among these E6 targets, a subset of mutants differentiated E6-AP binding, p53 binding, and p53 degradation activities. These results demonstrated that E6 binding to E6-AP is not sufficient for binding to p53 and that E6 binding to p53 is not sufficient for inducing p53 degradation. The in vivo activity of these HPV-16 E6 mutants was tested in MECs. In agreement with the in vitro results, most of these p53 degradation-defective E6 mutants were unable to reduce the p53 level in early-passage MECs. Interestingly, several mutants that showed severely reduced ability for interacting with E6-AP, p53, and E6BP in vitro efficiently immortalized MECs. These immortalized cells exhibited low p53 levels at late passage. Furthermore, mutants defective for p53 degradation but able to immortalize MECs were also identified, and the immortal cells retained normal levels of p53 protein. These results imply that multiple functions of HPV-16 E6 contribute to MEC immortalization.  相似文献   

5.
The E6 protein of human papillomavirus types 16 and 18 (HPV-16 and HPV-18) can stably associate with the p53 protein in vitro. In the presence of rabbit reticulocyte lysate, this association leads to the specific degradation of p53 through the ubiquitin-dependent proteolysis system. We have examined the E6-p53 complex in more detail and have found that association of E6 with p53 is mediated by an additional cellular factor. This factor is present in rabbit reticulocyte lysate, primary human keratinocytes and in each of five human cell lines examined. The factor is designated E6-AP, for E6-associated protein, based on the observation that the E6 proteins of HPV-16 and 18 can form a stable complex with the factor in the absence of p53, whereas p53 association with the factor can be detected only in the presence of E6. Gel filtration and coprecipitation experiments indicate that E6-AP is a monomeric protein of approximately 100 kDa.  相似文献   

6.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

7.
The E6 protein from high-risk human papillomaviruses (HPVs) targets the p53 tumor suppressor for degradation by the proteasome pathway. This ability contributes to the oncogenic potential of these viruses. However, several aspects concerning the mechanism of E6-mediated p53 degradation at the cellular level remain to be clarified. This study therefore examined the role of cell localization and ubiquitination in the E6-mediated degradation of p53. As demonstrated within, following coexpression both p53 and high-risk HPV type 18 (HPV-18) E6 (18E6) shuttle from the nucleus to the cytoplasm. Mutation of the C-terminal nuclear export signal (NES) of p53 or treatment with leptomycin B inhibited the 18E6-mediated nuclear export of p53. Impairment of nuclear export resulted in only a partial reduction in 18E6-mediated degradation, suggesting that both nuclear and cytoplasmic proteasomes can target p53 for degradation. This was also consistent with the observation that 18E6 mediated the accumulation of polyubiquitinated p53 in the nucleus. In comparison, a p53 isoform that localizes predominantly to the cytoplasm was not targeted for degradation by 18E6 in vivo but could be degraded in vitro, arguing that nuclear p53 is the target for E6-mediated degradation. This study supports a model in which (i) E6 mediates the accumulation of polyubiquitinated p53 in the nucleus, (ii) E6 is coexported with p53 from the nucleus to the cytoplasm via a CRM1 nuclear export mechanism involving the C-terminal NES of p53, and (iii) E6-mediated p53 degradation can be mediated by both nuclear and cytoplasmic proteasomes.  相似文献   

8.
9.
Functional p53 protein is associated with the ability of cells to arrest in G1 after DNA damage. The E6 protein of cancer-associated human papillomavirus type 16 (HPV-16) binds to p53 and targets its degradation through the ubiquitin pathway. To determine whether the ability of E6 to interact with p53 leads to a disruption of cell cycle control, mutated E6 proteins were tested for p53 binding and p53 degradation targeting in vitro, the ability to reduce intracellular p53 levels in vivo, and the ability to abrogate actinomycin D-induced growth arrest in human keratinocytes. Mutations scattered throughout the amino terminus, either zinc finger or the central region but not the carboxy terminus, severely reduced the ability of E6 to interact with p53. Expression of HPV-16 E6 or mutated E6 proteins that bound and targeted p53 for degradation in vitro sharply reduced the level of intracellular p53 induced by actinomycin D in human keratinocytes. A perfect correlation between the ability of E6 proteins to reduce the level of intracellular p53 and their ability to block actinomycin D-induced cellular growth arrest was observed. These results suggest that interaction with p53 is important for the ability of HPV E6 proteins to circumvent growth arrest.  相似文献   

10.
11.
The human papillomavirus (HPV) E6 and E7 oncoproteins are two major proteins that remain expressing in HPV-associated human cancers. The high-risk HPVs synthesize E6 and E7 oncoproteins to alter the function of cellular regulatory proteins, such as p53 and retinoblastoma gene product, respectively. In this study, we demonstrated that HPV-18 E6 and E7 proteins were able to directly interact with some nuclear receptors (NRs), such as thyroid receptor, androgen receptor, and estrogen receptor (ER), whether or not appropriate hormones were present. The functional roles of these two oncoproteins in NRs depended on the cell type (including ligand), promoter context, and NR type. These two oncoproteins regulated ER functions through ER's AF-1, AF-2, or both. Hence, our results provide new insights into the mechanisms controlling the proliferation and immortalization of HPV infected cells by these two oncoproteins mediating through their regulatory functions in NR systems.  相似文献   

12.
The E6 oncoproteins of the cancer-associated or high-risk human papillomaviruses (HPVs) target the cellular p53 protein. The association of E6 with p53 leads to the specific ubiquitination and degradation of p53 in vitro, suggesting a model by which E6 deregulates cell growth control by the elimination of the p53 tumor suppressor protein. Complex formation between E6 and p53 requires an additional cellular factor, designated E6-AP (E6-associated protein), which has a native and subunit molecular mass of approximately 100 kDa. Here we report the purification of E6-AP and the cloning of its corresponding cDNA, which contains a novel open reading frame encoding 865 amino acids. E6-AP, translated in vitro, has the following properties: (i) it associates with wild-type p53 in the presence of the HPV16 E6 protein and simultaneously stimulates the association of E6 with p53, (ii) it associates with the high-risk HPV16 and HPV18 E6 proteins in the absence of p53, and (iii) it induces the E6- and ubiquitin-dependent degradation of p53 in vitro.  相似文献   

13.
14.
15.
Three naturally occurring variant human papillomavirus type 16 (HPV-16) E6 proteins, which contained amino acid substitutions predominantly near the N terminus, exhibited significant differences in their abilities to abrogate keratinocyte differentiation in response to serum and calcium and to induce the degradation of p53 in vitro. One variant surpassed the reference E6 protein in its ability to abrogate keratinocyte differentiation responses, whereas another showed a reduction in this activity. Interestingly, the biological activities of the HPV-16 E6 proteins and their abilities to induce p53 degradation in vitro were directly correlated. These results demonstrate that naturally occurring variants of HPV-16 differ in biological and biochemical properties which might result in differences in pathogenicity.  相似文献   

16.
17.
The high-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. Previous studies have identified two viral oncoproteins, E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high-risk HPV E6 protein to immortalize human mammary epithelial cells (MECs) has provided a single-gene model to study the mechanisms of E6-induced oncogenic transformation. In this system, the E6 protein targets the p53 tumor suppressor protein for degradation, and mutational analyses have shown that E6-induced degradation of p53 protein is required for MEC immortalization. However, the inability of most dominant-negative p53 mutants to induce efficient immortalization of MECs suggests the existence of additional targets of the HPV E6 oncoprotein. Using the yeast two-hybrid system, we have isolated a novel E6-binding protein. This polypeptide, designated E6TP1 (E6-targeted protein 1), exhibits high homology to GTPase-activating proteins for Rap, including SPA-1, tuberin, and Rap1GAP. The mRNA for E6TP1 is widely expressed in tissues and in vitro-cultured cell lines. The gene for E6TP1 localizes to chromosome 14q23.2-14q24.3 within a locus that has been shown to undergo loss of heterozygosity in malignant meningiomas. Importantly, E6TP1 is targeted for degradation by the high-risk but not the low-risk HPV E6 proteins both in vitro and in vivo. Furthermore, the immortalization-competent but not the immortalization-incompetent HPV16 E6 mutants target the E6TP1 protein for degradation. Our results identify a novel target for the E6 oncoprotein and provide a potential link between HPV E6 oncogenesis and alteration of a small G protein signaling pathway.  相似文献   

18.
Human papillomaviruses (HPV) of the high-risk type are causally involved in human tumors, in particular cervical carcinoma. Expression of the viral oncogenes E6 and E7 is maintained in HPV-positive tumors, and it was shown that E6 and E7 of HPV-16 can immortalize human keratinocytes, the natural host cells of the virus. Expression of the viral genes is also required for maintenance of the transformed phenotype. The oncogenic activity of the E6 and E7 oncoproteins is mediated by their physical and functional interaction with cellular regulatory proteins. To knock out the function of the E7 protein in living cells, we have developed peptide aptamers with high specific binding activity for the E7 protein of HPV-16. We show here that E7-binding peptide aptamers induce programmed cell death (apoptosis) in E7-expressing cells, whereas E7-negative cells are not affected. Furthermore, E7-binding peptide aptamers induce apoptosis in HPV-16-positive tumor cells derived from cervical carcinoma. The data suggest that E7-binding peptide aptamers may be useful tools to specifically eliminate HPV-positive tumors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号