首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dog pancreas isolated in situ was perfused with oxygenated dog blood and stimulated with pancreozymin, secretin, or both. There were no significant changes in the fine structure of the acinar, centroacinar, or duct cells attributable to the perfusion. Combined glutaraldehyde and osmium fixation gave good preservation of the secretory products of the acinar cell. Before stimulation, the lumen of the acini is filled with material similar in texture to the content of the zymogen granules, but of somewhat lower density. Release of secretion commonly takes place by coalescence of the limiting membrane of zymogen granules with the plasmalemma, but one granule opening at the surface may frequently be joined by others coalescing with its membrane and forming an interconnected series all with contents having the same texture as the released zymogen. Such a mechanism seems to permit a more rapid release of secretory product than discharge of individual granules. Pancreozymin stimulation caused marked depletion of zymogen granules, but no obvious changes in the Golgi apparatus. It is clear, therefore, that this hormone exerts its effect upon release of granules rather than upon their formation. Secretin stimulation of water and bicarbonate secretion caused a marked washing out of the luminal contents, but had little detectable effect on cellular structure.  相似文献   

2.
THE FINE STRUCTURE OF VON EBNER''S GLAND OF THE RAT   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of von Ebner's gland was studied in untreated rats and rats stimulated to secrete by fasting-refeeding or injection of pilocarpine. Cytological features were similar to those reported for pancreas and parotid gland. Abundant granular endoplasmic reticulum filled the basal portion of the cell, a well-developed Golgi complex was located in the vicinity of the nucleus, and the apical portion of the cell was filled with dense secretory granules. Dense heterogeneous bodies resembling lysosomes were closely associated with the Golgi complex. Coated vesicles were seen in the Golgi region and also in continuity with the cell membrane. Granule discharge occurred by fusion of the granule membrane with the cell membrane at the secretory surface. Successive fusion of adjacent granules to the previously fused granule formed a connected string of granules in the apical cytoplasm. Myoepithelial cells were present within the basement membrane, and nerve processes were seen adjacent to acinar and myoepithelial cells. Duct cells resembled the intercalated duct cells of the major salivary glands.  相似文献   

3.
A hypothesis to explain the stimulatory role of cyclic AMP (adenosine 3':5'-monophosphate) in pancreatic enzyme secretion. has been tested. In this hypothesis cyclic AMP would activate a phospholipase activity, which would lead to a locally increased lysophospholipid formation, resulting in a fusion between the zymogen granule membrane and the apical plasma membrane. Cyclic AMP added to isolated pig pancreatic zymogen granules leads to an increased lysis of these granules, but the slowness of this effect makes its physiological significance dubious. In pancreatic homogenates or zymogen granules no stimulating effect of cyclic AMP on lipase of phospholipase activity could be demonstrated. Isolated zymogen granules have a high lysophospholipid content (27% of total phospholipids), consisting of the 1-acyl and 2-acyl forms of lysophosphatidylcholine and lysophosphatidylethanolamine. Experiments with radioactive phosphatidylcholine indicate that the lysophospholipids are due to the action of endogenous (phospho)lipases during the isolation procedure. It is concluded that these experiments do not lend support to the above hypothesis for the mechanism of action of cyclic AMP in pancreatic enzyme secretion  相似文献   

4.
The subcellular components involved in the synthesis, transport, and discharge of secretory proteins in the guinea pig pancreatic exocrine cell have been isolated from gland homogenates by differential and gradient centrifugation. They include rough and smooth microsomes derived respectively from the rough endoplasmic reticulum and Golgi periphery, a zymogen granule fraction consisting mainly of mature zymogen granules and a smaller population of condensing vacuoles, and a plasmalemmal fraction. Membrane subfractions were obtained from the particulate components by treatment with mild (pH 7.8) alkaline buffers which extract the majority (>95%) of the content of secretory proteins, allowing the membranes to be recovered from the extracting fluid by centrifugation. The purity of the fractions was assessed by electron microscopy and by assaying marker enzymes for cross-contaminants. The rough and smooth microsomes were essentially free of mitochondrial contamination; the smooth microsomes contained <15% rough contaminants. The zymogen granule fraction and its derived membranes were free of rough microsomes and contained <3% contaminant mitochondria. The plasmalemmal fraction was heterogeneous as to origin (deriving from basal, lateral, and apical poles of the cell) and contained varying amounts of adherent fibrillar material arising from the basement membrane and terminal web. The lipid and enzymatic composition of the membrane fractions are described in the following reports.  相似文献   

5.
In the previous paper we described an in vitro system of guinea pig pancreatic slices whose secretory proteins can be pulse-labeled with radioactive amino acids. From kinetic experiments performed on smooth and rough microsomes isolated by gradient centrifugation from such slices, we obtained direct evidence that secretory proteins are transported from the cisternae of the rough endoplasmic reticulum to condensing vacuoles of the Golgi complex via small vesicles located in the periphery of the complex. Since condensing vacuoles ultimately become zymogen granules, it was of interest to study this phase of the secretory cycle in pulse-labeled slices. To this intent, a zymogen granule fraction was isolated by differential centrifugation from slices at the end of a 3-min pulse with leucine-14C and after varying times of incubation in chase medium. At the end of the pulse, few radioactive proteins were found in this fraction; after +17 min in chaser, its proteins were half maximally labeled; they became maximally labeled between +37 and +57 min. Parallel electron microscopic radioautography of intact cells in slices pulse labeled with leucine-3H showed, however, that zymogen granules become labeled, at the earliest, +57 min post-pulse. We assumed that the discrepancy between the two sets of results was due to the presence of rapidly labeled condensing vacuoles in the zymogen granule fraction. To test this assumption, electron microscopic radioautography was performed on sections of zymogen granule pellets isolated from slices pulse labeled with leucine-3H and subsequently incubated in chaser. The results showed that the early labeling of the zymogen granule fractions was, indeed, due to the presence of highly labeled condensing vacuoles among the components of these fractions.  相似文献   

6.
非洲爪蟾卵经钙离子载体A 23187激活后,在10,000g下离心得到爪蟾卵提取物。Lambda DNA加入上述提取物可构建出染色质结构,并在染色质表面重建核被膜,同时在染色质外的区域形成环形片层。核被膜与环形片层有相似的发生途径,它们都是由两类在形态、大小、膜结构上有明显差别的膜泡融合而来。首先是直径200nm的圆形小膜泡相互融合成双层膜片层,同时核孔复合体在双层膜上大量装配,以这些双层膜片层为基础,光滑的大膜泡与之融合导致环形片层的扩张与核被膜的成熟。  相似文献   

7.
Pancreatic secretion in the rat was stimulated in vivo by pilocarpine injection causing 90% of the storage granules to be discharged within 2 h. Incubation in vitro with [14C]sorbitol indicated that maximal ingestion of this extracellular space marker occurred 3 h after secretogogue injection. Morphological cell membrane measurements on cells with stimulated secretion revealed a simultaneous decrease in amount of membrane bordering the microvilli at the cell apex, lamellar processes, and infoldings present at the latero-basal face of these cells. In 3-h stimulated cells, having the average zymogen granule content characteristic for that phase of secretion, ferritin treatment in vitro showed that the infoldings and related fragmentation vesicles had ingested ferritin and could consequently be considered as being transport vehicles for redundant cell membrane. During stimulated secretion numerous vesicles and vacuoles appeared in the apical cytoplasm. Part of these structures were postulated to be related to the Golgi complex and were discussed in relation to secretory protein transport. Another part of these structures was assumed to have an endocytotic nature, although they never contained ferritin.  相似文献   

8.
The synthesis of "very low" density lipoprotein in liver cells is characterized by the fact that the synthesized products, mostly triglycerides, are processed in the form of discrete, size-limited granules or globules, about 400 A in diameter. The present investigation has been made possible in part by the use of a fixative (OsO4 in bidistilled H2O at pH 6.0, in the absence of electrolytes) particularly effective in preserving cytoplasmic membranes and lipids, and giving them high stainability and differential contrast. Under these technical conditions, the lipoprotein granules retain their morphology and high density to electrons practically unaltered, and may serve as tracers in determining their route of transport from the sites of synthesis, starting at the rough-smooth ER junctions, to the lumen of Golgi concentrating vesicles. From the observations, it may be deduced that, along with lipoprotein granule synthesis and transport, there are also production and transfer of new membranes in the form of tubular extensions of smooth ER network which, by progressive fusion and coalescence, participate in the elaboration of fenestrated plates and solid Golgi sacs. In contradistinction to the entire process of liver lipoprotein granule synthesis, transport, and segregation, as reported in the present paper, appears to constitute a developmental sequence which includes the following communicating compartments, in consecutive order: cisternae of rough ER where proteins and possibly phospholipids are synthesized, smooth ER network where triglycerides are synthesized and transported in the form of dense granules, fusion of smooth ER tubular extensions into Golgi fenestrated plates, and further coalescence into solid Golgi sacs, ending in the segregation of the granules in appended concentrating vesicles, or detached "secretory vesicles." It seems that it is this progressive evolution in growth and configuration of membranes which is reflected in the so called polarity, from forming to mature faces, of the Golgi apparatus.  相似文献   

9.
GRAMP 92, a secretion granule-associated membrane protein, has been identified in exocrine and endocrine storage granule membranes using a monoclonal antibody against rat parotid secretion granule membranes. This integral membrane glycoprotein has a M(r) of 92,000 in pancreatic zymogen granule membranes, and is slightly smaller in endocrine granule membranes. In both cases, deglycosylation produces core proteins of M(r) 52,000, that have identical peptide fingerprints. Unlike the slightly smaller zymogen granule membrane glycoprotein GP-2, GRAMP 92 does not appear to be bound to the membrane by a glycophosphatidyl inositol anchor, is not found on the plasma membrane and is not released into the secretion. Within acinar cells, low levels of antigen are observed immunocytochemically over the membranes of most granules. Antigen is highly concentrated on small vesicles that are closely apposed to (and possibly interact with) granules. As well, antigen is localized to organelles in the Golgi and basolateral regions that are part of the endocytic pathway. In hepatocytes a glycoprotein similar if not identical to GRAMP 92 marks the endocytic pathway including lysosomes. These findings indicate that GRAMP 92 is a widely distributed endocytic component and suggest that cells specialized for regulated secretion may adapt such components for storage granule function. Granule-associated GRAMP 92-rich membranes may link the exocytotic and endocytic pathways.  相似文献   

10.
This paper presents morphological evidence on the origin of cortical granules in the oocytes of Arbacia punctulata and other echinoderms. During oocyte differentiation, those Golgi complexes associated with the production of cortical granules are composed of numerous saccules with companion vesicles. Each element of the Golgi complex contains a rather dense homogeneous substance. The vesicular component of the Golgi complex is thought to be derived from the saccular member by a pinching-off process. The pinched-off vesicles are viewed as containers of the precursor(s) of the cortical granules. In time, they coalesce and form a mature cortical granule whose content is bounded by a unit membrane. Thus, it is asserted that the Golgi complex is involved in both the synthesis and concentration of precursors utilized in the construction of the cortical granule. Immediately after the egg is activated by the sperm the primary envelope becomes detached from the oolemma, thereby forming what we have called the activation calyx (see Discussion). Subsequent to the elaboration of the activation calyx, the contents of cortical granules are released (cortical reaction) into the perivitelline space. The discharge of the constituents of a cortical granule is accomplished by the union of its encompassing unit membrane, in several places, with the oolemma.  相似文献   

11.
The intracellular localization of pancreatic enzyme secretion-stimulating activity in rat pancreas was investigated. We found and purified a pancreatic enzyme secretion-stimulating peptide from rat bile/pancreatic juice. The peptide is trypsin-sensitive (showing temporary trypsin inhibitory activity), and it is hypothesized that it acts as a trypsin-sensitive mediator in the feedback regulation of diet-induced pancreatic enzyme secretion. The zymogen granule fraction was purified 5-fold by ultracentrifugation by the Percoll density gradient method. The purity of the zymogen granule fraction was determined from the specific amylase activity and electron microscopic morphology. The specific enzyme activities of amylase and trypsin and the trypsin inhibitory activity increased in parallel during the purification, and the pancreatic enzyme secretion-stimulating activity was also localized in the zymogen granule fraction. These results suggest that the pancreatic enzyme secretion-stimulating peptide originates from the acinar cells, and that it is secreted through exocytosis of zymogen granules into the small intestine, its ratio to trypsin thus remaining constant. This idea supports our hypothesis that the stimulating peptide acts as a mediator for the feedback regulation of pancreatic enzyme secretion by trypsin.  相似文献   

12.
We have examined, in the pancreatic exocrine cell, the metabolic requirements for the conversion of condensing vacuoles into zymogen granules and for the discharge of the contents of zymogen granules. To study condensing vacuole conversion, we pulse labeled guinea pig pancreatic slices for 4 min with leucine-3H and incubated them in chase medium for 20 min to allow labeled proteins to reach condensing vacuoles. Glycolytic and respiratory inhibitors were then added and incubation continued for 60 min to enable labeled proteins to reach granules in control slices. Electron microscope radioautography of cells or of zymogen granule pellets from treated slices showed that a large proportion of prelabeled condensing vacuoles underwent conversion in the presence of the combined inhibitors. Osmotic fragility studies on zymogen granule suspensions suggest that condensation may result from the aggregation of secretory proteins in an osmotically inactive form. Discharge was studied using an in vitro radioassay based on the finding that prelabeled zymogen granules can be induced to release their labeled contents to the incubation medium by carbamylcholine or pancreozymin. Induced discharge is not affected if protein synthesis is blocked by cycloheximide for up to 2 hr, but is strictly dependent on respiration. The data indicate that transport and discharge do not require the pari passu synthesis of secretory or nonsecretory proteins (e.g. membrane proteins), suggesting that the cell may reutilize its membranes during the secretory process. The energy requirements for zymogen discharge may be related to the fusion-fission of the granule membrane with the apical plasmalemma.  相似文献   

13.
The evidence for vesicular transport as a mechanism for secretion by human basophils is reviewed. Initially, direct electron-microscopic inspection of experimentally produced and sequentially biopsied contact allergy skin lesions revealed a unique form of secretion termed piecemeal degranulation, characterized by the slow emptying of secretory granule contents (with retention of empty containers) in the absence of extrusion of entire granules. Budding of small vesicles to/from secretory granules was observed, and cytoplasmic vesicles were abundant. A generalized degranulation model was proposed to unify classical regulated secretion and this new form of secretion. Investigation of the mechanism(s) of secretion from human basophils required the development of numerous tools and resources. Chief among these were: (a) isolation and purification of circulating basophils; (b) identification of specific growth factors to increase the supply of this rare granulocyte; (c) understanding of secretogogue mechanisms and reliable analyses of secreted basophil products; and (d) development of ultrastructural preparations allowing imaging of small vesicles and quantifiable small electron-dense tags for granule materials in small vesicles. Applications of these tools to well-defined models of basophil secretion have established a role for vesicles as a mechanism for effecting secretion of histamine and the Charcot-Leyden crystal protein from activated human basophils.  相似文献   

14.
The molecular basis of exocytotic membrane fusion in the pancreatic acinar cell was investigated using an in vitro assay that measures both zymogen granule-plasma membrane fusion and granule-granule fusion. These two fusion events were differentially sensitive to Ca(2+), suggesting that they are controlled by different Ca(2+)-sensing mechanisms. Botulinum neurotoxin C (BoNT/C) treatment of the plasma membranes caused cleavage of syntaxin 2, the apical isoform of this Q-SNARE, but did not affect syntaxin 4, the basolateral isoform. BoNT/C also cleaved syntaxin 3, the zymogen granule isoform. BoNT/C treatment of plasma membranes abolished granule-plasma membrane fusion, whereas toxin treatment of the granules reduced granule-plasma membrane fusion and abolished granule-granule fusion. Tetanus toxin cleaved granule-associated synaptobrevin 2 but caused only a small reduction in both granule-plasma membrane fusion and granule-granule fusion. Our results indicate that syntaxin 2 is the isoform that mediates fusion between zymogen granules and the apical plasma membrane of the acinar cell. Syntaxin 3 mediates granule-granule fusion, which might be involved in compound exocytosis. In contrast, the major R-SNARE on the zymogen granule remains to be identified.  相似文献   

15.
Summary Thin sections and freeze-fracture replicas were used to investigate the ultrastructural changes associated with renin secretion from the juxtaglomerular part of the afferent arteriole of male mice. Adrenalectomized animals in which renin secretion was stimulated by furosemide application and bleeding were also studied. Exocytosis of mature electron-dense granules was found in all experimental groups. Before extrusion, the region of granule facing the cell membrane changed, with vesicular and/or stacked membrane-like profiles and a small local protrusion of the granule membrane appearance of. Concomitantly, punctuate sites of fusion between the cell and granule membranes were observed. Later, unaltered amorphous, and altered membrane-like granule content was released from omega-shaped cavities into the extracellular space. In stimulated animals the alteration and extrusion of several closely apposed granules was reminiscent of compound exocytosis. Coated pits were frequently seen, suggesting specific retrieval of the former granule membrane. The collapsing silhouette of a depleted granule very rarely took the form of a saccule whose narrow membrane-bounded neck was continuous with the extracellular space.Observed were two additional events by which active and inactive renin may be released. Small electron-lucent vacuoles of undetermined origin fused with the cell membrane and, in stimulated kidneys, some epithelioid cell processes disintegrated. However, the interpretation of the related ultrastructural phenomena was uncertain.These studies were supported by the German Research Foundation within the SFB 90 Cardiovasculäres System  相似文献   

16.
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.  相似文献   

17.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5-10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50-100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes less than smooth microsomes less than zymogen granules. Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptides was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules. Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

18.
The major glycoprotein of pancreatic zymogen granule membranes (GP-2) was detected in the medium of acinar cell suspensions from rat pancreas. Its release from the cells was studied in pulse-chase metabolic labeling experiments with radioactive methionine. GP-2 (apparent Mr = 80 000) was found to be processed to a form of slightly lower apparent Mr (75 000) after about 4 h chase. At about the same time this smaller form of GP-2 appeared in the medium. These results are in accordance with earlier findings in vivo. At different chase times acinar cells were extracted with Triton X-114 to separate water-soluble proteins from membrane-associated (hydrophobic) proteins. This experiment showed that GP-2 is slowly converted from a membrane-bound glycoprotein to a soluble glycoprotein after its reduction in apparent molecular mass, causing its detachment from the membrane. Further analysis indicated that the detachment process may occur at the zymogen granule membrane as well as the plasma membrane. Immunocytochemistry on ultrathin cryosections of pancreatic tissue showed that GP-2 is localized on zymogen granule membranes, plasma membranes and in the acinar lumen. Although in much smaller quantities, GP-2 is also present in the granule content. Thus, in summary, GP-2 is synthesized as a true membrane glycoprotein which is gradually processed to a soluble species and is found in the secretion.  相似文献   

19.
The localization of alkaline phosphatase in the specific granules of rabbit polymorphonuclear leukocytes was investigated. The results obtained suggest very strongly that alkaline phosphatase is a component of the granule membrane. The enzyme remains attached to the membrane upon disruption of the granules by the use of detergents or by hypotonic shock and subsequent extraction with sodium sulfate, and can be isolated together with fragments of the granule membrane by isopycnic equilibration. Treatment of the granules with high amounts of Triton-X-100, sodium deoxycholate, or hexadecyltrimethylammonium bromide releases the enzyme in soluble form. In polymorphonuclear leukocyte homogenates, lysis of the granules is needed in order to render alkaline phosphatase fully accessible to substrates. This suggests that the catalytic site of the enzyme is exposed at the inner face of the granule membrane.  相似文献   

20.
Golgi-rich fractions were prepared from homogenates of adult rat pancreas by discontinuous gradient centrifugation. These fractions were characterized by stacks of cisternae associated with large, irregular vesicles and were relatively free of rough microsomes, mitochondria, and zymogen granules. The Golgi-rich fractions contained 50% of the UDP-galactose: glycoprotein galactosyltransferase activity; the specific activity was 12-fold greater than the homogenate. Such fractions represented < 19% of thiamine pyrophosphatase, uridine diphosphatase, adenosine diphosphatase, and Mg2+-adenosine triphosphatase. Zymogen granules and the Golgi-rich fractions were extracted with 0.2 m NaHCO3, pH 8.2, and the membranes were isolated by centrifugation. The glycoprotein galactosyltransferase could not be detected in granule membranes, while the specific activity in Golgi membranes was 25-fold greater than the homogenate.At least 35 polypeptide species were detected in Golgi membranes by polyacrylamide gel electrophoresis in 1% sodium dodecylsulfate. These ranged in molecular weight from 12,000 to <160,000. There were only minor differences between Golgi membranes and smooth microsomal membrane. In contrast, zymogen granule membranes contained fewer polypeptides. A major polypeptide, which represented 30–40% of the granule membrane profile, accounted for less than 3% of the polypeptides of Golgi membranes or smooth microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号