首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collision coupling model describes interactions between receptors and G-proteins as first requiring the molecules to find each other by diffusion. A variety of experimental data on G-protein activation have been interpreted as suggesting (or not) the compartmentalization of receptors and/or G-proteins in addition to a collision coupling mechanism. In this work, we use a mathematical model of G-protein activation via collision coupling but without compartmentalization to demonstrate that these disparate observations do not imply the existence of such compartments. In experiments with GTP analogs (commonly GTPγS), the extent of G-protein activation is predicted to be a function of both receptor number and the rate of GTP analog hydrolysis. The sensitivity of G-protein activation to receptor number is shown to be dependent upon the assay used, with the sensitivity of phosphate production assays (GTPase) >GTPγS-binding assays >cAMP inhibition assays. Finally, the amount of competition or crosstalk between receptor species activating the same type of G-proteins is predicted to depend on receptor and G-protein number, but in some (common) experimental regimes this dependence is expected to be minimal. Taken together, these observations suggest that the collision coupling model, without compartments of receptors and/or G-proteins, is sufficient to explain a variety of observations in literature data.  相似文献   

2.
Features of dopamine receptors coupling to G-proteins in the plasma membranes from neural tissue of the mollusc Lymnaea stagnalis were studied. Radioligand binding analysis of [3H]-dopamine and investigation of the GTPase activity have showed that dopamine receptors both inhibit and stimulate coupled G-proteins. It have been found that changing of sulfhydril groups state of the membrane proteins modulates interaction of dopamine receptors with G-proteins. The inhibitory influence of dopamine receptors on the coupled to them G-proteins is potentiated by reduction of thiol groups.  相似文献   

3.
Binding of GTP and its analogue, guanosine 5′-O-[γ-thio]triphosphate (GTP[S]) to G-proteins, and release of GTP[S] from G-proteins are stimulated by muscarinic acetylcholine (mACh) receptors in intact cardiac membranes. Upon solubilization of receptors and G-proteins by membrane extraction with the detergent, 3-[(cholamidopropyl)dimethylammonio]-1-propanesulphonate, followed by sucrose density gradient centrifugation, agonist-liganded mACh receptors stimulated binding of GTP[S] and hydrolysis of GTP by G-proteins with similar requirements as in intact membranes. One soluble agonist-activated mACh receptor induced binding of GTP[S] to several (about seven) soluble G-proteins. In contrast to intact membranes, however, agonist activation of mACh receptors did not induce release of GTP[S] from solubilized G-proteins. The data presented indicate that mACh receptors can interact with and efficiently activate G-proteins even in solution, whereas the possible interaction of receptors with GTP[S]-liganded G-proteins observed in intact membranes is lost upon solubilization of these components.  相似文献   

4.
GTP-binding regulatory proteins (G-proteins) were identified in chemosensory membranes from the channel catfish, Ictalurus punctatus. The common G-protein beta-subunit was identified by immunoblotting in both isolated olfactory cilia and purified taste plasma membranes. A cholera toxin substrate (Mr 45,000), corresponding to the G-protein that stimulates adenylate cyclase, was identified in both membranes. Both membranes also contained a single pertussis toxin substrate. In taste membranes, this component co-migrated with the alpha-subunit of the G-protein that inhibits adenylate cyclase. In olfactory cilia, the Mr 40,000 pertussis toxin substrate cross-reacted with antiserum to the common amino acid sequence of G-protein alpha-subunits, but did not cross-react with antiserum to the alpha-subunit of the G-protein from brain of unknown function. The interaction of G-proteins with chemosensory receptors was determined by monitoring receptor binding affinity in the presence of exogenous guanine nucleotides. L-Alanine and L-arginine bind with similar affinity to separate receptors in both olfactory and gustatory membranes from the catfish. GTP and a nonhydrolyzable analogue decreased the affinity of olfactory L-alanine and L-arginine receptors by about 1 order of magnitude. In contrast, the binding affinities of the corresponding taste receptors were unaffected. These results suggest that olfactory receptors are functionally coupled to G-proteins in a manner similar to some hormone and neurotransmitter receptors.  相似文献   

5.
Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.  相似文献   

6.
Abstract: Current thinking on the mechanisms of ethylene per ception and transduction is reviewed with particular emphasis on receptors, monomeric G-proteins and protein kinase cas cades. The review seeks to reconcile some of the inconsisten cies which appear to exist between molecular genetic and bio chemical approaches and suggests that perception and trans duction pathways are more complex than is generally recog nised at present.  相似文献   

7.
Plant growth and development are coordinalely controlled by several internal factors and environmental signals. To sense these environmental signals, the higher plants have evolved a complex signaling network, which may also cross talk with each other. Plants can respond to the signals as individual cells and as whole organisms. Various receptors including phytochromes, G-proteins coupled receptors (GPCR), kinase and hormone receptors play important role in signal transduction but very few have been characterized in plant system. The heterotrimeric G-proteins mediate the coupling of signal transduction from activated GPCR to appropriate downstream effectors and thereby play an important role in signaling. In this review we have focused on some of the recent work on G-proteins and two of the effectors, PLC and PLD, which have been shown to interact with Gα subunit and also discussed their role in abiotic stress tolerance.Key words: abiotic stress, G-protein couple receptor, heterotrimeric G-protein, phospholipases, plant receptors, signal transduction  相似文献   

8.
Shpakov AO 《Tsitologiia》2002,44(3):242-258
In the review, data of the literature and own results on the functional coupling between the serpentine type receptors and the heterotrimeric G-proteins are analyzed and summarized. The role of cytoplasmic loops and C-tail domain of the receptors in interaction with G-protein alpha-subunits of different types is discussed. On the basis of theoretical analysis it is shown that the second cytoplasmic loop and the proximal to the membrane segments of the third cytoplasmic loop, containing the main G-protein-coupled molecular determinants, have the cationic nature and can form the helical structures. A molecular model of signal transduction from the receptor to G-protein, based on the electrostatic interactions between the cytoplasmic loops of receptors and receptor-binding regions of G-proteins, is developed.  相似文献   

9.
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) can be categorized into molecularly divergent groups by their differential sensitivity to pertussis toxin. Receptors specifically use either pertussis toxin-sensitive or-insensitive G-proteins to couple to specific effectors. Receptor stimulation of phospholipase C, however, is pertussis toxin sensitive in some systems and pertussis toxin insensitive in others. We studied the coupling of receptors to phospholipase C by expressing receptors from both systems into a single cell, the Xenopus oocyte. [Arg8]Vassopressin (AVP) receptors from liver and cholecystokinin-8(sulfated) (CCK) receptors from brain were expressed in oocytes by intracellular injection of RNA. Both receptors stimulated a Ca2+-dependent Cl- current which can also be evoked by intracellular injection of inositol 1,4,5-tris-phosphate. Hence, receptor stimulation of phospholipase C was measured as the evoked Ca2+-dependent Cl- current. The liver AVP receptor, which is known to stimulate phospholipase C in a pertussis toxin-insensitive manner (Lynch, C. J., Prpic, V., Blackmore, P. F., and Exton, J. H. (1986) Mol. Pharmacol. 29, 196-203), was found to stimulate phospholipase C through a pertussis toxin-sensitive pathway in the Xenopus oocyte. The CCK receptor from brain stimulated phospholipase C through a pertussis toxin-insensitive pathway. Both AVP and CCK stimulation of phospholipase C were attenuated by the intracellular injection of excess G-protein beta gamma subunits. Neither pertussis toxin treatment nor intracellular injection of beta gamma subunits affected any steps subsequent to inositol 1,4,5-tris-phosphate production. From these data we conclude that both the pertussis toxin-sensitive and -insensitive pathways for receptor coupling to phospholipase C are transduced by heterotrimeric G-proteins. We also find that there is a lack of coupling fidelity of receptors to G-proteins in stimulation of phospholipase C which can be influenced by the membrane environment.  相似文献   

10.
G-proteins are present in eggs, and experiments in which GTP-γ-S, GDP-β-S, cholera toxin and pertussis toxin have been injected into eggs have indicated the involvement of G-proteins in egg activation at fertilization and in oocyte maturation. Eggs into which serotonin or muscarinic acetylcholine receptors have been introduced by mRNA injection produce fertilization-like responses when exposed to serotonin or acetylcholine; since these neurotransmitter receptors act by way of G-proteins, this observation further supports the conclusion that a G-protein is involved in the fertilization process.  相似文献   

11.
Wnts are secreted ligands with diverse roles in animal development. Wnts bind to cell surface membrane proteins termed Frizzleds. Molecular cloning of members of the Frizzled family revealed hydropathy plots with seven putative, transmembrane-spanning regions, conserved in Frizzleds characterized in mice, humans, flies, and worms. Understanding how Frizzled translates binding of their cognate Wnts into intracellular signals controlling aspects of development has been an elusive goal. Earlier observations gathered from a variety of model systems provided compelling, but indirect, support that the Frizzled receptors may be members of the superfamily of G-protein-coupled receptors that possess seven transmembrane-spanning domains. Search for a linkage between Frizzled and possible downstream heterotrimeric G-proteins has been advanced by the use of bacterial toxins, antisense DNA, and novel chimeric receptor constructs. New data establish that Frizzleds are indeed bona fide G-protein-coupled receptors. Frizzled-1 couples via G-proteins Go and Gq to the canonical beta-catenin-Lef-Tcf pathway. Frizzled-2 couples via Gq and Gt to downstream effectors including calcium mobilization. Frizzleds and G-proteins might once have been considered strange bedfellows, not likely partners in signaling. The new data, consistent with the properties known for virtually all members of the G-protein-coupled receptors, reveal a more classic romance of signaling elements controlling aspects of early development.  相似文献   

12.
Protein-protein interactions define specificity in signal transduction and these interactions are central to transmembrane signaling by G-protein-coupled receptors (GPCRs). It is not quite clear, however, whether GPCRs and the regulatory trimeric G-proteins behave as freely and independently diffusible molecules in the plasma membrane or whether they form some preassociated complexes. Here we used clear-native polyacrylamide gel electrophoresis (CN-PAGE) to investigate the presumed coupling between thyrotropin-releasing hormone (TRH) receptor and its cognate G(q/11) protein in HEK293 cells expressing high levels of these proteins. Under different solubilization conditions, the TRH receptor (TRH-R) was identified to form a putative pentameric complex composed of TRH-R homodimer and G(q/11) protein. The presumed association of TRH-R with G(q/11)α or Gβ proteins in plasma membranes was verified by RNAi experiments. After 10- or 30-min hormone treatment, TRH-R signaling complexes gradually dissociated with a concomitant release of receptor homodimers. These observations support the model in which GPCRs can be coupled to trimeric G-proteins in preassembled signaling complexes, which might be dynamically regulated upon receptor activation. The precoupling of receptors with their cognate G-proteins can contribute to faster G-protein activation and subsequent signal transfer into the cell interior.  相似文献   

13.
gpDB is a publicly accessible, relational database, containing information about G-proteins, G-protein coupled receptors (GPCRs) and effectors, as well as information concerning known interactions between these molecules. The sequences are classified according to a hierarchy of different classes, families and subfamilies based on literature search. The main innovation besides the classification of G-proteins, GPCRs and effectors is the relational model of the database, describing the known coupling specificity of GPCRs to their respective alpha subunits of G-proteins, and also the specific interaction between G-proteins and their effectors, a unique feature not available in any other database. AVAILABILITY: http://bioinformatics.biol.uoa.gr/gpDB CONTACT: shamodr@biol.uoa.gr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

14.
G-proteins in the signal-transduction pathways of Dictyostelium discoideum   总被引:6,自引:0,他引:6  
The functional interaction of surface cAMP receptors with effector enzymes via G-proteins was investigated in Dictyostelium discoideum. Several experimental conditions were used to investigate signal transduction, such as reduced temperatures, use of down-regulated cells and of mutants. The results are presented as a model describing the complex interaction between multiple forms of the surface cAMP receptor and different G-proteins that are responsible for the generation of the second messengers, cAMP, cGMP, InsP3 and Ca2+.  相似文献   

15.
J H Gordon  M M Rasenick 《FEBS letters》1988,235(1-2):201-206
Regulation of synaptic membrane adenylate cyclase is likely to involve interaction between neurotransmitter receptors, G-proteins and the adenylate cyclase catalytic unit as well as several other membrane proteins and lipids. Despite intensive study of this system, regulation of guanine nucleotide binding by the G-proteins which stimulate [Gs] or inhibit [Gi] adenylate cyclase has been examined only when those proteins have been purified and removed from the influence of the membrane environment. The hydrolysis-resistant photoaffinity GTP-analog, P3-(4-azidoanilido)-P1 5'-GTP (AAGTP) is able to bind specifically to the G-proteins in rat cerebral cortex synaptic membranes and, in this study, we have used this probe to examine the specificity and selectivity of guanine nucleotide binding to each G-protein without removing those proteins from the synaptic membrane. Marked differences were noted between guanine nucleotide binding data obtained with detergent-soluble G-proteins and data from this in situ approach. In these studies it was found that the affinity of the G-proteins binding AAGTP correlated well with the expression of adenylate cyclase activity, the affinity of both forms of Gs increasing under conditions favoring the stimulation of that enzyme.  相似文献   

16.
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands.Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.  相似文献   

17.
The presence of G-proteins, interacting with cAMP surface receptors, was investigated in vegetative cells, aggregation-competent cells, and migrating slugs of Dictyostelium discoideum. Our results indicate that G-proteins are present in all stages. In vegetative cells there is a limited number of cAMP receptors but no effect of GTP tau S on cAMP binding could be detected; in addition, no effect of cAMP on GTP tau S binding or GTPase activity was observed. In both aggregation-competent cells and slugs GTP tau S inhibits cAMP binding, while cAMP stimulates GTP tau S binding and high-affinity GTPase. Since the presence of G-proteins coupled to cAMP receptors could be demonstrated in slugs, the involvement of the effector enzymes adenylate cyclase and phospholipase C was investigated. The results show that adenylate cyclase activity is stimulated by GTP tau S in both stages and that in cells from migrating slugs the Ins(1,4,5)P3 production is increased upon stimulation with cAMP. The possible involvement of G-proteins in signal transduction during the slug stage of D. discoideum is discussed.  相似文献   

18.
The signal systems of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, coupled to heterotrimeric G-proteins and sensitive to pheromones and alimentary molecules, are prototypes of hormonal signal systems of the higher vertebrate animals and are widely used in studies on molecular mechanisms of their functioning. This review summarizes and analyzes data on structural-functional organization of the first two components of these systems—receptors of the serpentine type and heterotrimeric G-proteins; mechanisms of functional coupling of receptors and G-proteins both between each other and to other signal proteins are discussed. It has been shown that at the early stages of evolution of signaling systems, at the yeast level, various models of transduction of signals into the cell were tested; many of them differ essentially from the classic model of the three-component, G-protein-coupled signal system of the higher vertebrates.  相似文献   

19.
The wide distribution of corticotrophin-releasing hormone (CRH) receptors in brain and periphery appear to be important in integrating the responses of the brain, endocrine and immune systems to physiological, psychological and immunological stimuli. The type 1 receptors are highly expressed throughout the cerebral cortex, a region involved in cognitive function and modulation of stress responses, where they are coupled to the adenylyl cyclase system. Using techniques that analyse receptor-mediated guanine-nucleotide binding protein (G-proteins) activation, we recently demonstrated that expressed type 1alpha CRH receptors are capable of activating multiple G-proteins, which suggests that CRH can regulate multiple signalling pathways. In an effort to characterize the intracellular signals generated by CRH in the rat cerebral cortex we sought to identify G-proteins activated by CRH in a physiological membrane environment. Rat cerebral cortical membrane suspensions were analysed for the ability of CRH to stimulate incorporation of [alpha-32P]-GTP-gamma-azidoanilide to various G-protein alpha-chains. Our results show that CRH receptors are coupled to and activate at least five different G-proteins (Gs, Gi, Gq/11, Go and Gz) with subsequent stimulation of at least two intracellular signalling cascades. In addition, the photoaffinity experiments indicated that the CRH receptors preferentially activate the 45 kDa form of the Gs alpha-protein. This data may help elucidate the intracellular signalling pathways mediating the multiple actions of CRH especially under different physiological conditions.  相似文献   

20.
Differences in the relative potencies of agonists have been used successfully in the past to classify receptors. Such use of agonists can be justified on the basis of ideas and equations developed using the occupancy model of drug action. However the occupancy model makes no allowance for possible complications which may arise when the drug-receptor complex interacts with a transducer-effector system. For some receptor-effector systems use of an equilibrium ternary complex model may be better than use of the occupancy model but the former still does not take into account the possible effect of guanosine-5'-triphosphate on the system. A steady-state version of the ternary complex model has therefore been analysed to explore possible interpretations of relative potencies, relative efficacies and apparent affinity constants estimated from concentration-response curves. It is concluded that for agonists which act on receptors which function through G-proteins these pharmacological parameters may depend on the concentration of the relevant G-protein in the cell membranes and on the intracellular concentrations of guanosine-5'-triphosphate and guanosine-5'-diphosphate. If these concentrations vary appreciably between tissues then the parameters are also likely to vary, even for a single receptor-transducer system. It follows that the use of such agonist parameters to classify receptors or receptor-transducer systems is not likely to be totally dependable. It is also possible that agonists which interact with only one receptor-transducer system may show selectivity between tissues with different concentrations of G-proteins and of guanine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号