首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various inhibitors of phospholipases and serine/threonine kinases were used to determine whether activation of these enzymes was necessary for Ag-induced exocytosis in rat basophilic RBL-2H3 cells. Several inhibitors, however, inhibited events other than those intended in stimulated RBL-2H3 cells. Staurosporine and KT5926, inhibitors of protein kinase C and myosin L chain kinase, respectively, suppressed, in a dose-dependent manner, hydrolysis of inositol phospholipids, release of arachidonic acid, and exocytosis in cells stimulated with Ag or Ca(2+)-ionophore, A23187. Such generalized inhibition could also be induced in permeabilized cells with several peptide inhibitors of tyrosine kinases. All the above inhibitors suppressed Ag-induced tyrosine phosphorylation of several proteins, including phospholipase C gamma 1, and this suppression correlated with the inhibition of hydrolysis of inositol phospholipids and exocytosis. Three inhibitors of protein kinase C, Ro31-7549, calphostin C, and a peptide inhibitor, did not inhibit the tyrosine phosphorylation of proteins but selectively blocked exocytosis, presumably, by inhibiting protein kinase C. Thus, both tyrosine phosphorylation of proteins and the activation of protein kinase C were necessary events for hydrolysis of inositol phospholipids and exocytosis.  相似文献   

2.
Antigen-stimulated rat basophilic leukemia (RBL-2H3) cells release serotonin and other inflammatory mediators by a process that requires Ca2+ influx and increased cytoplasmic Ca2+ levels, and is mimicked by Ca2+ ionophores. We report here that the Ca2+ response to antigen and to ionomycin has two components, a Ca2+ spike and a Ca2+ plateau. In nominally Ca2+-free medium, both components of the Ca2+ response are inhibited and secretion does not occur. In Na+-free medium, the initial Ca2+ spike induced by antigen or ionomycin occurs, but the plateau is again absent and secretion is inhibited by 30 to 50%. Secretion is also reduced by 10(-4) M amiloride, an inhibitor of Na+ transport pathways, and by 10(-5) M concentrations of two amiloride analogs with greater activity than amiloride, respectively, against Na+ channels and Na+/Ca2+ exchange. Phorbol esters, which stimulate protein kinase C, enhance the Ca2+ plateau and secretion caused by suboptimal amounts of both antigen and ionomycin; this enhancement depends on extracellular Na+. The Na+ ionophore, monensin, mimics the Ca2+ plateau. From these data, we infer that the Ca2+ spike and plateau reflect separate responses of RBL-2H3 cells to antigen or ionomycin. We propose that the Ca2+ plateau results at least in part from the activation of a Na+-dependent Ca2+ influx pathway. One possible mechanism is that antigen binding stimulates a protein kinase C-regulated Na+ transport system. The resulting influx of Na+ may activate a Na+/Ca2+ antiporter that supports the Ca2+ plateau and mediator release.  相似文献   

3.
Bisorbicillinol, which is isolated from Trichoderma sp. USF2690, is an inhibitor of β-hexosaminidase release and tumor necrosis factor (TNF)-α, and Interleukin (IL)-4 secretion from rat basophilic leukemia (RBL-2H3) cells, with IC50 values of 2.8?μM, 2.9?μM and 2.8?μM respectively. We showed that the inhibitory mechanism of β-hexosaminidase release and TNF-α secretion involved inhibition of Lyn, a tyrosine kinase. The inhibitory activities of bisorbicillinol indicate that this compound is a new candidate anti-allergic agent.  相似文献   

4.
There are at least three isozymes (C alpha, C beta, and C gamma) of the mammalian catalytic (C) subunit of cAMP-dependent protein kinase (PKA) (Beebe, S., Oyen, O., Sandberg, M., Froysa, A., Hansson, V., and Jahnsen, T. (1990) Mol. Endocrinol. 4, 465-475). To compare the C gamma and C alpha isozymes, the respective cDNAs were expressed in permanently transformed Kin-8 PKA-deficient Y1 adrenal cells using the mouse metallothionein promoter. The recombinant C subunits were characterized as immunoreactive, zinc-inducible, cAMP-dependent kinase activities. In contrast to C alpha, histone was a better substrate than Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) for C gamma. Furthermore, C gamma histone kinase activity was not inhibited by the protein kinase inhibitor peptide (5-24 amide), which has been widely used as a PKA-specific inhibitor. The major C gamma peak (type I) eluted from DEAE-Sepharose at a higher NaCl concentration (120 mM) than the C alpha type I eluted (70 mM). C gamma and C alpha type II eluted between 220 and 240 mM NaCl. C gamma required higher concentrations of cAMP than C alpha did for dissociation from the mutant type I holoenzyme. These differences provided a basis for the separation of the mutant RI-associated isozymes on DEAE-Sepharose. Both C alpha (41-42 kDa) and C gamma (39-40 kDa) were identified by a C subunit antibody after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. Zinc induced the PKA-mediated rounding phenotype in C gamma and C alpha clones, thereby restoring the cells to the parent Y1 adrenal cell phenotype. Collectively, these data indicate that C gamma is an active PKA C subunit but suggest that C gamma and C alpha have different protein and peptide recognition determinants.  相似文献   

5.
Exogenous activators of protein kinase C such as PMA in combination with a Ca2+ ionophore (A23187), cause secretion in rat basophilic (RBL-2H3) cells,but they do so through stimulatory signals that are not the same as those generated by Ag or oligomers of IgE. On the one hand, the synergy between PMA and A23187 and the suppression of Ag-mediated signals (hydrolysis of inositol phospholipids and rise in concentration of cytosolic Ca2+) by PMA were totally dependent on protein kinase C. The loss of synergistic and inhibitory actions of PMA, for example, correlated with the loss of protein kinase C (as determined by immunoblotting techniques) when cells were continuously exposed to PMA. Furthermore, the permeabilization of RBL-2H3 cells resulted in the loss of both protein kinase C and the inhibitory action of PMA, but both were retained if cells were exposed to PMA before permeabilization Ag-induced secretion, on the other hand, was not as dependent on the presence of protein kinase C. The potent inhibitor of this enzyme, staurosporine, which blocked completely the secretory response to the combination of PMA and A23187, did not inhibit Ag-induced secretion except at concentrations (greater than 10 nM) that inhibited Ag-stimulated hydrolysis of inositol phospholipids as well. Also RBL-2H3 cells still showed some secretory-response (approximately 25% of normal) to Ag when cells were depleted (greater than 98%) of protein kinase C by prolonged treatment with PMA. Previous studies have indicated that the secretory response to PMA and A23187 is much lower than that elicited by Ag when the concentrations of stimulants were matched to give the same increase in concentrations of cytosolic Ca2+.  相似文献   

6.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

7.
Antigen-mediated exocytosis in intact rat basophilic leukemia (RBL-2H3) cells is associated with substantial hydrolysis of membrane inositol phospholipids and an elevation in concentration of cytosol Ca2+ ([ Ca2+i]). Paradoxically, these two responses are largely dependent on external Ca2+. We report here that cells labeled with myo-[3H]inositol and permeabilized with streptolysin O do release [3H]inositol 1,4,5-trisphosphate upon stimulation with antigen or guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) at low (less than 100 nM) concentrations of free Ca2+. The response, however, is amplified by increasing free Ca2+ to 1 microM. The subsequent conversion of the trisphosphate to inositol 1,3,4,5-tetrakisphosphate is enhanced also by the increase in free Ca2+. Although [3H]inositol 1,4,5-trisphosphate accumulates in greater amounts than is the case in intact cells, [3H]inositol 1,4-bisphosphate is still the major product in permeabilized cells even when the further metabolism of [3H]inositol 1,4,5-trisphosphate is suppressed (by 77%) by the addition of excess (1000 microM) unlabeled inositol 1,4,5-trisphosphate and the phosphatase inhibitor 2,3-bisphosphoglycerate. It would appear that either the activity of the membrane 5-phosphomonoesterase allows virtually instantaneous dephosphorylation of the inositol 1,4,5-trisphosphate under all conditions tested or both phosphatidylinositol 4-monophosphate and the 4,5-bisphosphate are substrates for the activated phospholipase C. The latter alternative is supported by the finding that permeabilized cells, which respond much more vigorously to high (supraoptimal) concentrations of antigen than do intact RBL-2H3 cells, produce substantial amounts of [3H]inositol 1,4-bisphosphate before any detectable increase in levels of [3H]inositol 1,4,5-trisphosphate.  相似文献   

8.
Three monoclonal antibodies (mAb) directed against the regulatory domain of the protein kinase C gamma (PKC gamma); 15G4, 5A2 and 36G9, were shown to display distinct properties with respect to PKC gamma kinase activity [Cazaubon, S., Marais, R., Parker, P. & Strosberg, A.D. (1989) Eur. J. Biochem. 182, 401-406]. The mAb 5A2 and 36G9, which act as potent inhibitors of the cofactor-dependent kinase activity, can no longer bind PKC gamma in the presence of phosphatidylserine and phosphatidylserine/phorbol ester, respectively; 15G4 binding is not influenced by effectors. Due to this functional relationship between the inhibitory mAb- and cofactor-binding sites, we sought to localize the mAb epitopes with respect to the functional sites of PKC gamma. For this purpose, several deletions were introduced at the 5' end of the PKC gamma cDNA and the mutant proteins were expressed in Escherichia coli. The determination of the immunoreactivity of the deleted PKC gamma proteins shows that the amino acid residues essential to the binding of 5A2 and 36G9 are directly adjacent to the second cysteine-rich motif: these are contained in the sequences at positions 151-163 and 164-197, respectively. In addition, various deletions around the C1 region of the regulatory domain allowed the identification of the second cysteine-rich motif as a functional binding site for phorbol dibutyrate. These deletion studies thus demonstrate that the epitopes recognized by the inhibitory mAbs 5A2 and 36G9 are distinct from the cofactor-binding sites. This suggests that the binding of phosphatidylserine and phorbol ester induce conformational changes in the regulatory domain of PKC, which are thus responsible for the loss of the 5A2 and 36G9 immunoreactivity of the native protein. In this conformational state, PKC gamma conserves its ability to interact with the non-inhibitory mAb 15G4. By using synthetic peptides, the 15G4 epitope was localized to the sequence 297-310 in the V3 variable region. This indicates that the flexibility of the V3 region, which delimits the C-terminus of the regulatory domain, may not be necessary for the allosteric activation of PKC. In view of these results, we propose that PKC activation by its cofactors results in intramolecular changes which allow the enzyme to bind exogenous substrates.  相似文献   

9.
Exposure to antigen (Ag) caused a biphasic 1,2-diacylglycerol (DG) production in [3H]myristic acid-labeled RBL-2H3 cells; the early, small transient phase and the second large sustained phase. The accumulation of phosphatidic acid (PA) or phosphatidylethanol (PEt) in the presence of ethanol was paralleled by the second-phase DG generation. Ag-induced formation of phosphocholine and choline in [3H]choline-labeled cells suggested the hydrolysis of phosphatidylcholine (PC) by phospholipases C and D. Treatment with phorbol myristate (PMA) or A23187 caused increases in [3H]DG and water-soluble [3H]choline metabolites. In protein kinase C (PKC) down-regulated cells, PEt formation was markedly reduced. In these cells DG production induced by Ag and A23187 was largely suppressed, thus indicating that PKC would play an important regulatory role for PC hydrolysis. However, because the A23187 treatment showed significant accumulation of water-soluble choline metabolites in PKC down-regulated cells, an increase in intracellular Ca2+ is another factor regulating PC hydrolysis. Taken together, these results may indicate that PC hydrolysis in response to Ag is dependent on PKC and Ca2+.  相似文献   

10.
Mucin secretion by airway goblet cells is under the control ofapical P2Y2, phospholipaseC-coupled purinergic receptors. In SPOC1 cells, the mobilization ofintracellular Ca2+ by ionomycin orthe activation of protein kinase C (PKC) by phorbol 12-myristate13-acetate (PMA) stimulates mucin secretion in a fully additive fashion[L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis.Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17):L201-L210, 1997]. This apparent independence between PKC andCa2+ in the stimulation of mucinsecretion was tested in streptolysin O-permeabilized SPOC1 cells. Thesecells were fully competent to secrete mucin whenCa2+ was elevated from 100 nM to3.1 µM for 2 min following permeabilization; theCa2+EC50 was 2.29 ± 0.07 µM.Permeabilized SPOC1 cells were exposed to PMA or 4-phorbol atCa2+ activities ranging from 10 nMto 10 µM. PMA, but not 4-phorbol, increased mucin release at allCa2+ activities tested: at 10 nMCa2+ mucin release was 2.1-foldgreater than control and at 4.7 µM Ca2+ mucin release was maximal(3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 µMthan at 10 nM Ca2+. Hence, SPOC1cells possess Ca2+-insensitive,PKC-dependent, and Ca2+-dependentPKC-potentiated pathways for mucin granule exocytosis.

  相似文献   

11.
Surface and subsurface dynamics of Rat Basophilic Leukemia cells, a model system of stimulated secretion, were imaged using Scanning Force Microscopy (SFM) at a rate of 50-60 s/image. Cytoskeletal elements and organelles were tracked within quiescent cells and those activated after IgE receptor crosslinking. In addition, surface waves were observed moving within the plasma membrane. The structures seen in quiescent and activated cells can be correlated with those seen in electron micrographs and topographic SFM images of fixed detergent-extracted cells. Furthermore, images of the detergent-extracted nuclei reveal the presence of numerous nuclear pore complexes. High-magnification images of the nuclear pore complexes show evidence of subunit structure and exhibit dimensions consistent with those reported previously using electron microscopy. The behavior and overall change in morphology of cells observed during activation was consistent with that observed under similar conditions with Differential Interference Contrast microscopy. This study demonstrates that SFM, unlike other techniques, can be used to provide high-resolution information in both fixed and living cells.  相似文献   

12.
We have used primary cultures of swine granulosa cells to investigate the regulatory role of the protein kinase C pathway in the ovary. In this system, we observed the following. Swine granulosa cells bound [3H]phorbol 12,13-dibutyrate [( 3H]PDB) specifically with high affinity [apparent Ki for 12-O-tetradecanoylphorbol 13-acetate (TPA) = 3.1 (2.1-4.7) nM] and low capacity [0.68 (0.34-0.99) pmol/10(7) cells]. The cytosol of granulosa cells contained functionally active protein kinase C capable of phosphorylating distinct proteins in response to stimulation with active phorbol ester. TPA and PDB induced dose-dependent inhibition (greater than 85%) of follicle-stimulating-hormone (FSH)-stimulated progesterone production. Half-maximally inhibitory concentrations were 0.10 and 0.75 nM for TPA and PDB respectively, whereas phorbol analogues that do not activate protein kinase C were not inhibitory. TPA did not impede cyclic AMP generation in response to FSH, cholera toxin or forskolin acutely (within 48 h), but did inhibit the stimulatory effects of 8-bromo cyclic AMP, insulin and oestradiol on progesterone biosynthesis. In the presence of maximally effective concentrations of 25-hydroxy-, 20 alpha-hydroxy- or 22R-hydroxy-cholesterol as exogenous sterol substrates for cholesterol side-chain cleavage, treatment with TPA suppressed pregnenolone, progesterone and 20 alpha-hydroxypregn-4-en-3-one biosynthesis by more than 80%. The inhibitory effects of phorbol esters were not attributable to non-specific cytotoxicity, since prostaglandin F2 alpha production increased in the same cultures and aromatization of exogenously supplied testosterone to oestradiol was not suppressed. In intact granulosa cells, the effects of phorbol esters were mimicked by a synthetic non-diterpene diacylglycerol, 1-octanoyl-2-acetylglycerol, and the tumour promoter, mezerein, which specifically activates protein kinase C. We conclude that swine granulosa cells contain specific high-affinity receptors for phorbol esters that are functionally coupled to protein phosphorylation. Moreover, treatment with phorbol esters or non-phorbol activators of protein kinase C results in selective inhibition of cholesterol side-chain cleavage activity without impairing cyclic AMP generation or oestrogen biosynthesis.  相似文献   

13.
Previously, we reported that the isoprenoid pathway inhibitor, lovastatin, blocks the activation by IgE receptor cross-linking of 45Ca2+ influx, 1,4,5-inositol trisphosphate production, secretion, and membrane changes (ruffling, spreading) in intact RBL-2H3 rat basophilic leukemia cells. These results indicated that an isoprenoid pathway intermediate, very likely an isoprenylated protein, is importantly involved in the control of IgE receptor-mediated signal transduction. Here, we show that 20 h of pretreatment with lovastatin also inhibits antigen-induced secretion and membrane responses in streptolysin O-(SLO)-permeabilized cells. However, lovastatin does not inhibit secretion stimulated by the nonhydrolyzable GTP analog, GTP gamma S. Furthermore, the membrane responses to GTP gamma S persist, although in an attenuated form, in lovastatin-treated permeabilized cells. The relative insensitivity of GTP gamma S-induced responses to lovastatin was one of several indications that antigen and GTP gamma S may activate separate pathways leading to transmembrane responses in permeabilized cells. Further experiments showed that the beta-thio derivative of GDP, GDPBAS, inhibits the secretory and membrane responses to GTP gamma S, as expected for a GTP-binding protein-dependent signaling pathway, while having little effect on antigen-induced responses. Conversely, genistein blocks the secretory and membrane responses to antigen, as expected for a tyrosine kinase-dependent pathway, without altering the GTP gamma S-induced responses. From these results, and from additional data from cells treated with tyrphostins and sodium orthovanadate, we propose that IgE receptor-mediated secretion from permeabilized RBL-2H3 cells occurs by a tyrosine kinase-dependent pathway that requires isoprenoid pathway activity for function.We propose further that RBL-2H3 cells contain a separate GTP-binding protein-mediated signaling pathway whose direct activation by GTP gamma S is either independent of isoprenoid pathway activity or depends on the activity of an isoprenylated protein that is not significantly depleted after 20 h of lovastatin treatment.  相似文献   

14.
Diacylglycerol (DAG) acts as an allosteric activator of protein kinase C (PKC) and is converted to phosphatidic acid by DAG kinase (DGK). Therefore, DGK is thought to be a negative regulator of PKC activation. Here we show molecular mechanisms of functional coupling of the two kinases. gammaPKC directly associated with DGKgamma through its accessory domain (AD), depending on Ca2+ as well as phosphatidylserine/diolein in vitro. Mass spectrometric analysis and mutation studies revealed that gammaPKC phosphorylated Ser-776 and Ser-779 in the AD of DGKgamma. The phosphorylation by gammaPKC resulted in activation of DGKgamma because a DGKgamma mutant in which Ser-776 and Ser-779 were substituted with glutamic acid to mimic phosphorylation exhibited significantly higher activity compared with wild type DGKgamma and an unphosphorylatable DGKgamma mutant. Importantly, the interaction of the two kinases and the phosphorylation of DGKgamma by gammaPKC could be confirmed in vivo, and overexpression of the AD of DGKgamma inhibited re-translocation of gammaPKC. These results demonstrate that localization and activation of the functionally correlated kinases, gammaPKC and DGKgamma, are spatio-temporally orchestrated by their direct association and phosphorylation, contributing to subtype-specific regulation of DGKgamma and DAG signaling.  相似文献   

15.
Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells   总被引:1,自引:0,他引:1  
Antigen-mediated activation of mast cells results in Ca2+-dependent exocytosis of preformed mediators of the inflammatory response. To investigate the role of secretory vesicle motility in this response, we have performed time-lapse confocal microscopy on RBL-2H3 cells transfected with a green fluorescent protein-Fas ligand fusion protein (GFP-FasL). Green fluorescent protein-labeled vesicles exhibit rapid, bidirectional movement in both resting and activated cells and can be localized adjacent to microtubules. Colchicine treatment inhibits the motility of secretory vesicles as measured by fluorescence recovery after photobleaching (FRAP). Colchicine also inhibits both the extent and the rate of exocytosis triggered by receptor activation or by Ca2+ ionophore, demonstrating that microtubule-dependent movement of secretory vesicles plays an important role in the exocytic response .  相似文献   

16.
Hrs binding protein (Hbp) tightly associated with Hrs is thought to play a regulatory role in vesicular trafficking during endocytosis and exocytosis. In this study, we have expressed dominant-negative mutants of Hbp to evaluate their effects on the degranulation of secretory granules in RBL-2H3 mast cells. The dominant-negative mutants of Hbp significantly inhibited IgE receptor (FcepsilonRI)-triggered secretory response as tested by beta-hexosaminidase release. These results suggest that Hbp functions as a regulator in the FcepsilonRI-triggered degranulation of secretory granules in mast cells.  相似文献   

17.
In basophils, mast cells, and the RBL-2H3 tumor mast cell line, cross-linking the high-affinity immunoglobulin E receptor (Fc epsilon R1) stimulates a series of responses, particularly the activation of phospholipase C (PLC), that lead to allergic and other immediate hypersensitivity reactions. The mechanism of activation of PLC, however, is not clear. Here, we show that cross-linking Fc epsilon R1 on RBL-2H3 cells causes the tyrosine phosphorylation of at least 12 cellular proteins, including PLC gamma 1 (PLC gamma 1) and the receptor beta and gamma subunits. 32P-labeled PLC gamma 1 can be detected by anti-phosphotyrosine antibody as early as 10 s after the addition of antigen. The tyrosine-phosphorylated 33-kDa beta subunit and 9- to 11-kDa gamma subunit of the Fc epsilon R1 are additionally phosphorylated on serine and theonine residues, respectively, and are found as complexes with other phosphotyrosine-containing proteins in antigen-stimulated cells. Our results indicate a means by which the Fc epsilon R1 may control PLC activity in RBL-2H3 cells and raise the possibility that other receptor-mediated signalling events in mast cells may also be controlled through protein tyrosine phosphorylation.  相似文献   

18.
The lysine-rich histone H1 is a preferred substrate for the Ca2+-phospholipid-dependent protein kinase (protein kinase C). Histones H3 and H4 are poor substrates but potent inhibitors of the enzyme. The inhibitory effect of H3 and H4 seems to result mainly from a decreased sensitivity of protein kinase C to stimulation by phosphatidylserine (PS). These observations suggest that site-specific phosphorylation of one histone type can be regulated by other histones.  相似文献   

19.
Sheep anterior-pituitary cells permeabilized with Staphylococcus aureus alpha-toxin were used to investigate the role of cyclic AMP (cAMP) in exocytosis of luteinizing hormone (lutropin, LH) under conditions where the intracellular free Ca2+ concentration ([Ca2+]free) is clamped by Ca2+ buffers. At resting [Ca2+]free (pCa 7), cAMP rapidly stimulated LH exocytosis (within 5 min) and continued to stimulate exocytosis for at least 30 min. When cAMP breakdown was inhibited by 3-isobutyl-1-methylxanthine (IBMX), the concentration giving half-maximal response (EC50) for cAMP-stimulated exocytosis was 10 microM. cAMP-stimulated exocytosis required millimolar concentrations of MgATP, as has been found with Ca2(+)- and phorbol-ester-stimulated LH exocytosis. cAMP caused a modest enhancement of Ca2(+)-stimulated LH exocytosis by decreasing in the EC50 for Ca2+ from pCa 5.6 to pCa 5.9, but had little effect on the maximal LH response to Ca2+. Activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) dramatically enhanced cAMP-stimulated LH exocytosis by both increasing the maximal effect 5-7-fold and decreasing the EC50 for cAMP to 3 microM. This synergism between cAMP and PMA was further augmented by increasing the [Ca2+]free. Gonadotropin-releasing hormone (gonadoliberin, GnRH) stimulated cAMP production in intact pituitary cells. Since GnRH stimulation is reported to activate PKC and increase the intracellular [Ca2+]free, our results suggest that a synergistic interaction of the cAMP, PKC and Ca2+ second-messenger systems is of importance in the mechanism of GnRH-stimulated LH exocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号