首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal and abnormal extracellular matrix turnover is thought to result, in part, from the balance in the expression of metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). The clinical manifestations of an imbalance in these relationships are evident in a variety of pathologic states, including osteoarthritis, deficient long-bone growth, rheumatoid arthritis, tumor invasion, and inadequate cartilage repair. Articular cartilage defects commonly heal as fibrocartilage, which is structurally inferior to the normal hyaline architecture of articular cartilage. Transforming growth factor-beta 1 (TGF-beta1), a cytokine central to growth, repair, and inflammation, has been shown to upregulate TIMP-1 expression in human and bovine articular cartilage. Additionally, members of the TGF-beta superfamily are thought to play key roles in chondrocyte growth and differentiation. Bone morphogenetic protein-2 (BMP-2), a member of this superfamily, has been shown to regulate chondrocyte differentiation states and extracellular matrix composition. It was proposed that, by optimizing extracellular matrix composition, BMP-2 would enhance articular cartilage healing. After determining the release kinetics of BMP-2 from a collagen type I implant (Long-Evans male rats; two implants/rat, n = 14), it was found that, in a tissue engineering application, BMP-2 induced a hyaline-like repair of New Zealand White rabbit knee articular cartilage defects (3-mm full-thickness defects in the femoral trochlea; 2 defects/rabbit, n = 36). The quality of cartilage repair with BMP-2 (with or without chondrocytes) was significantly better than defects treated with BMP-2, as assessed by a quantitative scoring scale. Immunohistochemical staining revealed TIMP-1 production in the cartilage defects treated with BMP-2. When studied in vitro, it was found that BMP-2 markedly increased TIMP-1 mRNA by both bovine articular and human rib chondrocytes. Additionally, increased TIMP-1 mRNA was translated into increased TIMP-1 protein production by bovine chondrocytes. Taken together, these data suggest that BMP-2 may be a useful cytokine to improve healing of cartilaginous defects. Furthermore, these data suggest that the beneficial effects of BMP-2 may be, in part, related to alterations in extracellular matrix turnover.  相似文献   

2.
Injuries to the articular cartilage and growth plate are significant clinical problems due to their limited ability to regenerate themselves. Despite progress in orthopedic surgery and some success in development of chondrocyte transplantation treatment and in early tissue-engineering work, cartilage regeneration using a biological approach still remains a great challenge. In the last 15 years, researchers have made significant advances and tremendous progress in exploring the potentials of mesenchymal stem cells (MSCs) in cartilage repair. These include (a) identifying readily available sources of and devising appropriate techniques for isolation and culture expansion of MSCs that have good chondrogenic differentiation capability, (b) discovering appropriate growth factors (such as TGF-beta, IGF-I, BMPs, and FGF-2) that promote MSC chondrogenic differentiation, (c) identifying or engineering biological or artificial matrix scaffolds as carriers for MSCs and growth factors for their transplantation and defect filling. In addition, representing another new perspective for cartilage repair is the successful demonstration of gene therapy with chondrogenic growth factors or inflammatory inhibitors (either individually or in combination), either directly to the cartilage tissue or mediated through transducing and transplanting cultured chondrocytes, MSCs or other mesenchymal cells. However, despite these rapid pre-clinical advances and some success in engineering cartilage-like tissue and in repairing articular and growth plate cartilage, challenges of their clinical translation remain. To achieve clinical effectiveness, safety, and practicality of using MSCs for cartilage repair, one critical investigation will be to examine the optimal combination of MSC sources, growth factor cocktails, and supporting carrier matrixes. As more insights are acquired into the critical factors regulating MSC migration, proliferation and chondrogenic differentiation both ex vivo and in vivo, it will be possible clinically to orchestrate desirable repair of injured articular and growth plate cartilage, either by transplanting ex vivo expanded MSCs or MSCs with genetic modifications, or by mobilising endogenous MSCs from adjacent source tissues such as synovium, bone marrow, or trabecular bone.  相似文献   

3.
Mechanisms for asporin function and regulation in articular cartilage   总被引:1,自引:0,他引:1  
Osteoarthritis (OA), the most prevalent form of skeletal disease, represents a leading cause of disability following middle age. OA is characterized by the loss of articular cartilage; however, the details of its etiology and pathogenesis remain unclear. Recently, we demonstrated a genetic association between the cartilage extracellular matrix protein asporin and OA (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). Furthermore, we showed that asporin binds to transforming growth factor-beta (TGF-beta), a key cytokine in OA pathogenesis, and inhibits TGF-beta-induced chondrogenesis. To date, functional data for asporin have come primarily from mouse cell culture models of developing cartilage rather than from human articular cartilage cells, in which OA occurs. Here, we describe mechanisms for asporin function and regulation in human articular cartilage. Asporin blocks chondrogenesis and inhibits TGF-beta1-induced expression of matrix genes and the resulting chondrocyte phenotypes. Small interfering RNA-mediated knockdown of asporin increases the expression of cartilage marker genes and TGF-beta1; in turn, TGF-beta1 stimulates asporin expression in articular cartilage cells, suggesting that asporin and TGF-beta1 form a regulatory feedback loop. Asporin inhibits TGF-beta/Smad signaling upstream of TGF-beta type I receptor activation in vivo by co-localizing with TGF-beta1 on the cell surface and blocking its interaction with the TGF-beta type II receptor. Our results provide a basis for elucidating the role of asporin in the molecular pathogenesis of OA.  相似文献   

4.
Osteoarthritis has as main characteristics the degradation of articular cartilage and the formation of new bone at the joint edges, so-called osteophytes. In this study enhanced expression of TGF-beta1 and -beta3 was detected in developing osteophytes and articular cartilage during murine experimental osteoarthritis. To determine the role of endogenous TGF-beta on osteophyte formation and articular cartilage, TGF-beta activity was blocked via a scavenging soluble TGF-beta-RII. Our results clearly show that inhibition of endogenous TGF-beta nearly completely prevented osteophyte formation. In contrast, treatment with recombinant soluble TGF-beta-RII markedly enhanced articular cartilage proteoglycan loss and reduced the thickness of articular cartilage. In conclusion, we show for the first time that endogenous TGF-beta is a crucial factor in the process of osteophyte formation and has an important function in protection against cartilage loss.  相似文献   

5.
Bleeding, the most serious complication of thrombolytic therapy with tissue-type plasminogen activator (t-PA), is thought to result from lysis of fibrin in hemostatic plugs and from the systemic lytic state caused by unopposed plasmin. One mechanism by which systemic plasmin can impair hemostasis is by partially degrading fibrinogen to fragment X, a product that retains clottability but forms clots with reduced tensile strength that stimulate plasminogen activation by t-PA more than fibrin clots. The purpose of this study was to elucidate potential mechanisms by which fragment X accelerates t-PA-mediated fibrinolysis. In the presence of t-PA, clots containing fragment X were degraded faster than fibrin clots and exhibited higher rates of plasminogen activation. Although treatment with carboxypeptidase B, an enzyme that reduces plasminogen binding to fibrin, prolonged the lysis times of fragment X and fibrin clots, clots containing fragment X still were degraded more rapidly. Furthermore, plasmin or trypsin also degraded clots containing fragment X more rapidly than fibrin clots, suggesting that this effect is largely independent of plasminogen activation. Fragment X-derived degradation products were not preferentially released by plasmin from clots composed of equal concentrations of fibrinogen and fragment X, indicating that fragment X does not constitute a preferential site for proteolysis. These data suggest that structural changes resulting from incorporation of fragment X into clots promote their lysis. Thus, attenuation of thrombolytic therapy-induced fragment X formation may reduce the risk of bleeding.  相似文献   

6.
Articular cartilage has a limited capacity for self-renewal and repair. Tissue engineering of cartilage in vitro has been proposed as a solution to this problem; however, this approach is costly and requires a significant amount of time to grow the graft. An alternative approach is to implant chondroprogenitor cells seeded within a growth factor delivery scaffold directly into the defect site to promote tissue regeneration. The objective of this study was to develop a biocompatible growth factor delivery system capable of promoting chondrogenesis of infrapatellar fat pad (IFP)-derived stem cells. Transforming growth factor beta-1 (TGF-β1) was loaded into gelatin microspheres and incorporated into fibrin hydrogels containing IFP-derived stem cells. The release of TGF-β1 was quantified using an enzyme-linked immunosorbent assay, whereas chondrogenesis was demonstrated histologically and by quantifying sulfated glycosaminoglycan production after 21 days of in vitro culture. TGF-β1 loaded into gelatin microspheres appeared to be as effective in promoting chondrogenesis of IFP-derived stem cells as adding TGF-β1 directly to the medium. The influence of different microsphere fabrication parameters and TGF-β1 loading concentrations was also investigated but appeared to only have a small effect on subsequent chondrogenesis. The development of such growth factor delivery systems in combination with IFP-derived stem cells represents a potential new strategy for cartilage defect repair.  相似文献   

7.
Plasma factor XIII is the zymogen of the transglutaminase factor XIIIa. This enzyme catalyzes the formation of isopeptide cross-links between fibrin molecules in nascent blood clots that greatly increase the mechanical stability of clots and their resistance to thrombolytic enzymes. We have characterized the solution interactions of factor XIII with two variants of fibrinogen, the soluble precursor of fibrin. Both the predominant fibrinogen gamma(A)/gamma(A) and the major variant gamma(A)/gamma' form complexes with a 2 fibrinogen:1 factor XIII ratio. The absence of detectable concentrations of 1:1 complexes in equilibrium mixtures containing free factor XIII and 2:1 complexes suggests that this interaction is cooperative. Factor XIII binds fibrinogen gamma(A)/gamma' approximately 20-fold more tightly than fibrinogen gamma(A)/gamma(A), and the interaction with fibrinogen gamma(A)/gamma' (but not fibrinogen gamma(A)/gamma(A)) is accompanied by a significant release of Ca(2+). Taken together, these results suggest that the strikingly anionic gamma' C-terminal sequence contains features that are important for factor XIII binding. Consistent with this notion, a synthetic 20-residue polypeptide containing the gamma' sequence was found to associate with factor XIII in a 2:1 molar ratio and act as an efficient competitor for fibrinogen gamma(A)/gamma' binding.  相似文献   

8.
1. Polyacrylamide beads containing entrapped 35S-labelled proteoglycan molecules have been prepared. 2. The measurement of release of radioactivity provides an extremely sensitive assay for proteoglycan-degrading enzymes, including proteinases and hyaluronidase. 3. The amount of label released is a logarithmic function of enzyme concentration or time of incubation. Experiments were made in an attempt to explain this. 4. Assays were made by the new method at several pH values, and with the inclusion of inhibitors to identify the proteoglycan-degrading enzymes of rabbit ear cartilage. 5. A previously undescribed proteinase active against proteoglycan at pH4.5 but unaffected by pepstatin, was discovered. The enzyme was named cathepsin F, and was partially purified and characterized; it was detected in human articular cartilage.  相似文献   

9.
The oral administration of midazolam has often been used for sedation in pediatric patients. However, oral administration of an intravenous formulation of midazolam is difficult for younger pediatric patients because of its bitter taste. Liposomes have been developed as vesicles encapsulating various kinds of drugs to serve as a medical drug-delivery system. Thus, the aim of the present study was to produce pH-sensitive liposomes encapsulating midazolam and to evaluate its pharmacokinetics on rabbits. Liposome-encapsulated midazolam was produced from hydrogenated L-α-phosphatidylcholine, cholesterol, dipalmitoylphosphatidic acid, and midazolam. The capacity of liposomes to encapsulate midazolam (encapsulation efficiency), stability of encapsulation, and release efficiency were evaluated in vitro. Further, the produced liposome-encapsulated midazolam solution was orally administered to rabbits in vivo. As a result, midazolam was encapsulated by liposomes with a high encapsulation efficiency and was stably encapsulated in a physiological medium. Further, the produced liposomes rapidly and effectively released midazolam in an acidic medium in vitro. When the liposome-encapsulated midazolam solution was orally administered to rabbits, the time to achieve the maximum plasma concentration of midazolam after administration was slightly longer, but both the maximum plasma concentration and area under the concentration-time curve were higher than those receiving midazolam solution. In conclusion, we produced pH-sensitive liposome-encapsulated midazolam, which remained stable in a physiological medium and showed efficient release in an acidic environment. The results suggest that it is possible to clinically use liposome-encapsulated midazolam for oral administration as a useful drug-delivery vehicle.  相似文献   

10.
Autologous chondrocyte implantation (ACI) is the most widely used cell-based surgical procedure for the repair of articular cartilage defects. Challenges to successful ACI outcomes include limitation in defect size and geometry as well as inefficient cell retention. Second-generation ACI procedures have thus focused on developing three-dimensional constructs using native and synthetic biomaterials. Clinically significant and satisfactory results from applying autologous chondrocytes seeded in fibrin within a biodegradable polymeric material were recently reported. In the future, third-generation cell-based articular cartilage repair should focus on the use of chondroprogenitor cells and biofunctionalized biomaterials for more extensive and permanent repair.  相似文献   

11.
Transforming growth factor beta 1 (TGF-beta 1) has been shown to play a prominent role in controlling proteoglycan synthesis and breakdown as measured following addition to organ cultures of calf articular cartilage (Morales, T. I., and Roberts, A. B., J. Biol. Chem., 263, 12,828-12,831, 1988). In this study, we compare two closely related TGF-beta isoforms, TGF-beta 1 and TGF-beta 2, both by assessing the effects of exogenous peptide as well as by analyzing the biosynthesis and total amount of these two isoforms in cartilage explants. Added exogenously, TGF-beta 1 and TGF-beta 2 induce a comparable increase in proteoglycan synthesis over basal controls with saturation at approximately 5 ng/ml. Synthesis of TGF-beta by basal calf cartilage cultures is demonstrated by (i) immunolocalization of intracellular TGF-beta, (ii) Northern blot analysis of steady-state mRNA levels, and (iii) immunoprecipitation of metabolically labeled TGF-beta from tissue extracts and conditioned culture medium. The net amount of extractable TGF-beta 1 and TGF-beta 2 in the basal cartilage cultures was assessed by a functional assay involving inhibition of proliferation of CCL-64 mink lung epithelial cells and by sandwich enzyme-linked immunosorbent assay. The predominant isoform was TGF-beta 1 (60-85%) and the total TGF-beta 1 + TGF-beta 2 was in excess of the amount required for maximal activation of proteoglycan synthesis. The level of both isoforms was maintained relatively constant between Days 2 and 7 of culture despite a sharp (approximately two to fourfold) drop in proteoglycan synthesis. This suggests that cartilage contains a large pool of TGF-beta which is not readily accessible to the chondrocyte. We propose that much of the polypeptide is sequestered in the matrix awaiting release upon demand.  相似文献   

12.
The effect of transforming growth factor-beta (TGF-beta, 1 ng/ml) on proteoglycan synthesis by rabbit articular chondrocytes in culture was studied in the presence of fetal bovine serum. Exposure of confluent cells for 24 h to the factor resulted in a marked increase of 35S-labeled sulfate incorporation in the newly synthesized proteoglycans (PG), as estimated by glycosaminoglycan (GAG) radioactivity (+58%). The onset was observed 6 h after addition of the factor but was significant after 12 h. TGF-beta also enhanced the uptake of [35S]sulfate by chondrocytes, but had no effect on the release of PG by these cells. The effect of TGF-beta on the distribution of PG between the medium and the cell layer was shown to be dependent on the serum concentration in the medium: the relative proportion of cell-layer associated GAG of TGF-beta-treated cells decreased with increasing concentration of fetal bovine serum. The proportion of aggregated PG, the hydrodynamic size of PG monomers and GAG chains were not modified by TGF-beta, but the relative distribution of disaccharides 6- and 4-sulfate in GAG chains was altered by the factor: the proportion of chondroitin 6-sulfate (C6S) was decreased while that of chondroitin 4-sulfate (C4S) was augmented in presence of TGF-beta, leading to a decrease of the ratio C6S/C4S (-11 to -22%, P less than 0.01). The present study indicates that TGF-beta promotes the synthesis of a modified extracellular matrix in cultured articular chondrocytes. This mechanism could be relevant to some aspects of cartilage repair in osteoarticular diseases.  相似文献   

13.
Since articular cartilage has a limited potential for spontaneous healing, various techniques are employed to repair cartilage lesions. Acrylate-based double-network (DN) hydrogels containing ~90% water have shown promising properties as repair materials for skeletal system soft tissues. Although their mechanical properties approach those of native cartilage, the critical factor—stiffness—of DN-gels does not equal the stiffness of articular cartilage. This study investigated whether revised PAMPS/PAAm compositions with lower water content result in stiffness parameters closer to cartilage. DN-gels containing 61, 86 and 90% water were evaluated using two non-destructive, mm-scale indentation test modes: fast-impact (FI) and slow-sinusoidal (SS) deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. The dynamic modulus increased with decreasing water content in both testing modes. In the 61% water DN-gel, the modulus resembled that of cartilage (FI-mode: DN-gel = 12, cartilage = 17; SS-mode: DN-gel = 4, cartilage = 1.7 MPa). Loss angle increased with decreasing water content in fast-impact, but not in slow-sinusoidal deformation. However, loss angle was still much lower than cartilage (FI: DN-gel = 5, cartilage = 11; SS: DN-gel = 10, cartilage = 32°), indicating somewhat less ability to dissipate energy. Overall, results show that it is possible to adapt DN-gel composition to produce dynamic stiffness properties close to normal articular cartilage.  相似文献   

14.
Strategies for the tissue-engineering of living cardiac valve replacements are limited by a lack of appropriate scaffold materials that both permit cell viability and actively contribute to the growth of functional tissues. Components of the extracellular matrix can localize and modify growth factor signals, and by doing so impart instructional stimuli for direction of cell phenotype. Fibronectin, collagen I, and heparin were explored as affinity matrices for sequestering and presenting soluble signaling molecules to control differentiation of valvular interstitial cells (VICs) to myofibroblasts. VIC differentiation is commonly characterized by expression of stress fibers containing alpha smooth muscle actin (alpha-SMA), and transforming growth factor-beta1 (TGF-beta1) is a central mediator of this transition. Both fibronectin and heparin, which are known to possess TGF-beta1 binding interactions, were found to increase VIC alpha-SMA expression (120% and 258% of expression in controls), while VICs cultured on collagen I-modified substrates had diminished alpha-SMA expression (66% of control). Heparin treatment significantly stimulated VIC production of TGF-beta1 at all concentrations tested (50 to 400 mug/ml). Heparin-modified substrates were found to alter cell morphology through increased adsorption of serum proteins, specifically TGF-beta1. In sum, heparin produced alpha-SMA-positive myofibroblasts through both the de novo production of TGF-beta1, and its localization in the pericellular environment. The addition of heparin to fibronectin-modified substrates led to a synergistic increase in VIC alpha-SMA expression, produced by the reciprocal binding of fibronectin, heparin, cell-produced TGF-beta1. The characterization of molecules, both soluble and insoluble, that control VIC activation will be important for the development of tailored 3D culture environments for tissue-engineering applications.  相似文献   

15.
We have previously shown that TGF-beta 1 decreased the entry of G0/G1-synchronized rabbit articular chondrocytes (RAC) into S-phase, whereas it enhanced the proliferation rate of actively dividing cells (asynchronous or S-phase-synchronized cells). The growth proliferative effect was accompanied by both increased DNA replication rate and G2/M delay. Since TGF-beta mRNA has been detected in chondrocytes, it was of interest to study the expression of the factor in correlation with the cell cycle of RAC. Using cytofluorometric analysis of both DNA content and TGF-beta protein level, we demonstrated that S-phase-synchronized RAC constitutively expressed TGF-beta, whereas G0/G1-synchronized cells only display very low levels of the factor. The data showed that the expression of TGF-beta is correlated with S-phase traverse since it increases with the percentage of cells in S-phase (less than 27% in G0/G1 to 70% in S-phase-synchronized cells). Moreover, exposure of RAC to TGF-beta 1 (1 ng/ml) for 24 h increased the percentage of positive cells, independently of the number of cells in S-phase, indicating that the factor may up-regulate its own expression. All together, these data suggest that TGF-beta could play a role in initiating the proliferation of articular chondrocytes during the early events of osteoarthritis and might take a part in the repair of cartilage matrix.  相似文献   

16.
Pig articular cartilage was maintained in culture for 3 days with and without porcine interleukin 1. The proteoglycans remaining in the cartilage and those released into the medium were analysed by using radioimmunoassays for the hyaluronate-binding region, link protein and keratan sulphate. In interleukin 1-treated cultures after 3 days there was 38% release of total glycosaminoglycans into the medium, 18% release of binding region, 14% release of link protein and 20% release of keratan sulphate epitope, whereas in control cultures the proportions released were much less (16, 9, 10 and 7% respectively). Characterization of the proteoglycans in the media after 1.5 days and 3 days of culture showed that interleukin 1 promoted the release of proteoglycan of large average size and also the release of link protein and of low-Mr binding region which was unattached to proteoglycan. Both the link protein and binding region released were able to bind to exogenously added hyaluronate, whereas the proteoglycan in the medium was not. The proteoglycans extracted from cultured cartilage were similar to those from fresh cartilage: they contained a high proportion of aggregating proteoglycans and some low-Mr binding region. The proportion of this binding region extracted from the interleukin 1-treated cartilage was increased. The presence of interleukin 1 in the cultures therefore appeared to increase the rate of proteolytic degradation of proteoglycan in the matrix and to lead to a more rapid loss of intact binding region, of link protein and of large proteoglycan fragments into the medium.  相似文献   

17.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

18.
We investigated the in vitro activation of rat liver macrophages to a tumor-cytotoxic state with muramyl dipeptide (MDP), rough LPS (Re-LPS) and lipid A in both a free and liposome-encapsulated form. The tumor cytotoxic state of the liver macrophages was determined with a [methyl-3H]thymidine release assay using C26 colon adenocarcinoma cells as target cells. As was shown previously, the encapsulation of MDP within multi-lamellar phospholipid vesicles greatly enhanced the activating potency of the drug; by contrast, encapsulation of Re-LPS or lipid A significantly reduced the activation of macrophages as compared to the free form of these agents. At a dose of 1 ng of free Re-LPS per ml a significant induction of tumor cell lysis was observed whereas a maximal level was obtained at a concentration of approximately 10 ng/ml. By encapsulation of Re-LPS in liposomes the activating potency diminished 20- to 100-fold. The minimal concentration required to induce detectable macrophage activation with free lipid A was 10 ng/ml, while liposome-encapsulated lipid A did not induce any detectable tumor cell lysis up to a concentration of 200 ng/ml. After a 1-h pre-incubation with a lysosomal fraction from rat liver at pH 4.8, the macrophage-activating potency of Re-LPS and lipid A was diminished by up to 95% whereas MDP remained fully active under these conditions. We conclude that, due to endocytic uptake of liposome-incorporated Re-LPS and lipid A and subsequent intralysosomal degradation, these immunomodulators are inactivated with respect to their potency to activate liver macrophages to tumor cytotoxicity.  相似文献   

19.
In calf articular cartilage organ cultures, retinoic acid depressed proteoglycan anabolism to levels approximately 10% of control values and increased their catabolism approximately 14-fold at concentrations of 1 x 10(-8) and 1 x 10(-6) M, respectively, leading to a severe depletion of this component from the extracellular matrix (95% loss in 3 weeks). These effects were powerfully antagonized by maximal levels of transforming growth factors-beta (TGF-beta s) 1, 2, and 3, leading to preservation of matrix components. At a concentration of 1 x 10(-8) M retinoic acid, the TGF-beta s restored anabolism to control levels and lowered catabolic rates greater than 3-fold. While the TGF-beta s increased protein synthesis 2- to 3-fold over controls, retinoic acid alone did not change protein synthesis, as determined by incorporation of [3H]serine. Nevertheless, retinoic acid effectively antagonized the stimulation of protein synthesis by TGF-beta and restored control levels of synthesis at 1 x 10(-7) M. Analysis of proteins, labeled using [3H]serine and [35S]sulfate as precursors, by SDS-PAGE revealed that large molecular weight proteins (greater than 100 kDa) were not detectable in retinoic-acid-treated cultures, but treatment with the TGF-beta s restored these components in coincubation cultures, again supporting the antagonistic role of the polypeptide effectors on retinoid action. Treatment of the cultures with retinoic acid elevated levels of TGF-beta 2 synthesis, but not TGF-beta 1. While the role of the newly synthesized TGF-beta 2 in the set of events elicited by retinoic acid in articular cartilage is unclear, the results establish an intrinsic metabolic link between the isoprenoid and TGF-beta in articular cartilage. We propose that the retinoids and TGF-beta s are integral parts of a regulatory network that controls homeostasis, resorption, or growth, depending on their relative contributions.  相似文献   

20.
Several modes of mechanical stimulation, including compression, shear, and hydrostatic pressure, have been shown to modulate chondrocyte matrix synthesis, but the effects of mechanical tension have not been widely explored. Since articular cartilage is primarily loaded in compression, tension is not generally viewed as a major contributor to the stress state of healthy tissue. However, injury or attempted repair may cause tension to become more significant. Additionally, fibrocartilaginous tissues experience significant tensile stresses in their normal mechanical environment. In this study we investigated mechanical tension as a means to modulate matrix synthesis and cytoskeletal organization in bovine articular chondrocytes and meniscal fibrochondrocytes (MFCs) in a three-dimensional fibrin construct culture system. Oscillatory tension was applied to constructs at 1.0 Hz and 0–10% displacement variation using a custom device. For nearly all conditions and both cell types, oscillatory tension inhibited matrix synthesis as indicated by 3H-proline and 35S-sulfate incorporation. Additionally, oscillatory tension significantly increased proliferation by chondrocytes but not MFCs. Confocal imaging revealed that all cells initially displayed a rounded morphology, but over time MFCs spontaneously developed a three-dimensional, stellate morphology with numerous projections containing organized cytoskeletal filaments. Interestingly, while unloaded chondrocytes remained rounded, chondrocytes subjected to oscillatory tension developed a similar stellate morphology. Both the biochemical and morphological results of this study have important implications for successfully developing cartilage and fibrocartilage tissue replacements and repair strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号