首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new oscillating crucible viscometer, having a U-shaped circular channel, is described. The damping coefficient δ is lowered by an increase of the viscosity η. The instrument described here allows the solution to come in contact with inert plastic only. At all steps of its preparation and during viscosity measurements, giant DNA from rat liver nuclei was maintained at shear stresses around 10?4 dynes cm?2. Viscosity was studied as a function of surface tension, DNA concentration and shear stress. It was found that under our experimental conditions it was possible to obtain meaningful values for reduced viscosity, ηred, practically identical to intrinsic viscosity [η]. Rat liver nuclei are incubated in an alkaline lysing solution (pH 12.5; 22 °C): they are lysed immediately and the released DNA starts to uncoil. The viscosity of solutions of this giant DNA increases very slowly with time, reaching a maximum only after about ten hours. The process was accelerated by single-stranded breaks arising from methylation of DNA in vivo with dimethylnitrosamine. It was found that the time of DNA disentanglement was sensitive to an exceedingly small number of breaks. We think that we were able to measure molecular weights around the length of the single strand of an average chromosome (Mn 5 × 1010). An empirical relation between molecular weight and reduced viscosity after complete disentanglement was also established, as a linear log-log plot, covering a molecular weight range between 108 and 2.5 × 1010. It is suggested that the viscosimetric evaluation of DNA disentanglement is probably the most sensitive method for studying DNA damage induced “in vivo” by chemical carcinogens.  相似文献   

2.
DNA strand breaks induced in human CCRF-CEM cells by electrophilic chemicals (carcinogens/mutagens) can be readily quantitated via a facile alkaline unwinding assay. This procedure estimates the number of chemically induced DNA strand breaks on the basis of the percentage DNA converted from double-stranded to single-stranded form during an exposure to the alkaline unwinding conditions. The assay is based on the assumption that each strand break serves as a strand unwinding point during the alkaline denaturation. The extent of strand separation can be standardized with respect to the initial level of induced strand breaks by the use of X-rays, which produce known levels of DNA strand breaks per rad in mammalian cells. Subsequent to the alkaline exposure, the single- and double-stranded DNA were separated by use of thermostated hydroxylapatite columns (60 degrees C), and the DNA was quantitated via a fluorescence assay (Hoechst 33258 compound). A correlation was shown between mammalian DNA strand-breaking potential (as measured in this procedure) and the propensity of these chemicals to revert Salmonella typhimurium TA100.  相似文献   

3.
One percent orotic acid supplemented diet is a promoting treatment in the rat model of liver carcinogenesis. After treatment with this type of diet, DNA alterations were observed using alkaline sucrose gradients and alkaline elution methods. In this work we have utilized two unwinding methods for the detection of DNA fragmentation. One method is a viscosimetric method in which the rate of increase in DNA viscosity with time is related to the rate of alkaline DNA unwinding. The second method measures fluorimetrically the amount of renatured and denatured DNA after different times allowed for alkaline DNA unwinding. These two methods are very sensitive in detecting DNA breaks induced by typical alkylating agents, X-rays and H2O2. The two unwinding methods were clearly negative for the orotic acid supplemented diet. We suggest that the DNA alterations detected with alkaline sucrose gradients and alkaline elution methods, after promoting treatment with orotic acid, are probably different from the DNA breaks induced by typical alkylating agents, X-rays and H2O2.  相似文献   

4.
Changes in reduced viscosity of nuclear lysates from rat liver cells have been studied, in conditions of very low shear stress by the use of an oscillating viscometer, as a function of incubation time in alkaline (pH 12.5) and neutral (pH 8.0) solutions. In non-denaturing conditions, nuclear DNA showed a stepwise, time-dependent increase of reduced viscosity, which suggests that it behaves as a single hydrodynamic unit that progressively changes its radius and viscoelastic properties because of a very slow unfolding, through discrete successive transitions, from a highly superpacked structure toward a linear relaxed B-form fiber. Experimental conditions shown to reduce chromatin-DNA superpacking without changing DNA length (e.g. G1 cycling versus G0 non-cycling liver cells, or young versus old rat liver cells) dramatically increased the initial value of reduced viscosity and its time-dependent increment. Conversely, in denaturing conditions, reduced viscosity increased in the initial phase (probably because DNA unfolding prevails on DNA unwinding), then exhibited a plateau level (when unfolding balances unwinding), and subsequently decreased progressively to the value of sheared DNA (when unwinding becomes more rapid due to the progressive breakage of phosphodiester bridges in alkali). Experimental conditions known to induce DNA single- or double-strand breaks (i.e. the use of liver cells from rats treated with dimethylnitrosamine or 2-acetylaminofluorene, or of liver cells exposed to X-rays) caused in both neutral and alkaline solution an increment in the initial reduced viscosity and in the slope of its time-dependent increase, which may be related to a reduction of chromatin-DNA superpacking. Moreover, it became evident in denaturing conditions that a decrease of the maximum viscosity and of the time taken to reach it both related to a reduced DNA length. These viscoelastic properties are constantly correlated with independent DNA structural measurements on the same nuclear lysates, to discriminate the effect due to mere aggregation and disaggregation.  相似文献   

5.
《Free radical research》2013,47(6):381-389
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

6.
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

7.
DBD-FISH is a new procedure that allows detection and quantification of DNA breakage in situ within specific DNA target sites. Cells embedded in an agarose matrix on a slide are treated in an alkaline unwinding solution to transform DNA breaks into single-stranded DNA (ssDNA). After removal of proteins, DNA probes are hybridized and detected. DNA breaks increase the ssDNA and relax supercoiling of DNA loops, so more probe hybridizes, thereby increasing the surface area and fluorescence intensity of the FISH signal. The probe selects the chromatin area to be analysed.In order to restrict the extension of unwound ssDNA to a region closer to the origin of the DNA break, human leukocytes were processed for DBD-FISH with a whole genome probe, after a 10 Gy dose of X-rays, for various unwinding times: 5, 2 min and 30s. Two cell populations were detected after 30s, but not with the 5 or 2 min unwinding times. One cell group had small to medium haloes corresponding to the relaxation of DNA supercoiling after DAPI staining, and strong DBD-FISH labelling of induced DNA breaks, whereas the other cell group showed big haloes of DNA loop unfolding and an absence of DBD-FISH labelling. The latter group was similar to cells processed by DBD-FISH without the unwinding step. Thus, they should correspond to cells unaffected by the alkaline unwinding solution, possibly because very brief unwinding times do not allow the diffusion of the alkali into the cells deep within the gel, thus biasing the results. Taking this into account, 2 min seems to be the minimum unwinding time required for an accurate detection of a signal by DBD-FISH.  相似文献   

8.
Survival as well as repair of DNA strand breaks were studied in CHO cells after exposure to internal beta-rays from incorporated [3H]thymidine at 4 degrees C (equivalent to an exposure at 'infinitely high' dose rate) and at 37 degrees C (low dose rate). DNA strand breaks were determined by the alkaline unwinding technique. In cells exposed at 4 degrees C cell killing was five times higher (Do = 250 decays per cell) than in cells exposed at 37 degrees C (Do = 1280 decays per cell). Strand breaks induced by 3H decay at 37 degrees C were repaired with the same kinetics as those generated at 4 degrees C. Therefore the different degrees of cell killing at 4 degrees C and 37 degrees C cannot be attributed to a difference in the repair kinetics for DNA strand breaks.  相似文献   

9.
The DNA unwinding method was used to estimate DNA breakage in Chinese hamster cells exposed to heavy ions with LET in the range of 750-5000 keV/micron. Comparison of the primary induced unwinding rate per dose unit for ions with various track diameters but similar LET showed a pronounced influence on the track diameter. Low-energy ions, producing thin tracks with diameters (penumbra) in the submicrometer region, were almost two orders of magnitude less efficient than more energetic ions producing tracks with diameters of several micrometers and about three orders of magnitude less efficient than X-rays. For the thin tracks, clustering of breaks was indicated by comparison of the DNA unwinding rates in two different alkaline solutions. The results indicate that the unwinding rate cannot be used as a good measurement for DNA breaks in this case. The residual unwinding remaining after 4 h of repair at 37 degrees C correlated well with the ability of the various ions to produce cell-killing.  相似文献   

10.
DNA strand breaks can be detected with great sensitivity by exposing calf thymus DNA to alkaline solutions and monitoring the rate of strand unwinding. Fluorometric analysis of DNA unwinding (FADU) is a reliable method for detecting single-strand DNA breaks as an index of DNA damage induced by photosensitizer.m-Chloroperbenzoic acid (CPBA) was used as a photosensitizer in the photodamage of calf thymus DNA. When DNA is exposed to ionizing radiation, the radicals produced in the irradiated sample modify the base-pair regions of the double strands. The protective action of copper salt, Schiff base [ethylene diamine with ethyl acetate](L) and its Cu(II) complex (Cu(7) L Cl(14)) against DNA damage photoinduced by CPBA was studied using ethidium bromide as a fluorescent probe. Treatment of DNA with 5, 10, 50, 100, or 200 microM CPBA produced 75%, 48%, 38%, 32% and 30% double-stranded DNA remaining, respectively after 30 min of alkaline treatment at 15 degrees C. Treatment of calf thymus DNA irradiated with CPBA with a dose of 1 mM [Cu(7) L Cl(14)] produced 96% double-stranded remaining protection under the same conditions compared with irradiated DNA without addition of Cu(II) complex of Schiff base.  相似文献   

11.
The DNA-unwinding method developed by Ahnstr?m and his coworkers to measure DNA strand breaks in mammalian cells was used to measure single-strand breaks (SSB) in the DNA of intact yeast cells. DNA unwinding, which took place inside the rigid cell wall of yeast, was investigated as a function of time, radiation dose, and of pH and salt concentration of the alkaline solution. After DNA unwinding had taken place, the cell wall was destroyed by partial enzymatic digestion and sonication in the presence of detergents. Fragments of single- and double-stranded DNA were separated using hydroxylapatite chromatography. In this way the most suitable conditions for DNA unwinding within the cell wall were established. The results show that SSB and double-strand breaks (DSB) give rise to different kinetics of DNA unwinding.  相似文献   

12.
DNA breaks and repair in mouse leukemia L1210 cells treated with 3 different types of cross-linkers, mitomycin C (MMC), 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) and SN-07 (a macromolecular antibiotic), were studied. Measured in D37 values, MMC gave the highest number of cross-links per lethal 'hit' directly after the 1-h treatment in the alkaline elution assay, followed by ACNU and SN-07. A good dose-response increase in induced interstrand DNA cross-linking frequency was observed in cells treated with 2.5-10 micrograms/ml MMC and with 10-100 micrograms/ml ACNU for 1 h with and without 24-h post-incubation. After 6-h post-incubation, the highest frequency of cross-linking was observed in cells treated with 2.5 micrograms/ml MMC and 30 micrograms/ml ACNU, while cross-link production continued in the cells treated with SN-07 for 12-h post-incubation. No significant increase in DNA breaks was observed in cells treated with MMC throughout 24-h post-incubation. The highest frequency of single-strand DNA breaks in cells treated with ACNU was observed immediately after the treatment and they disappeared after 6-h post-incubation. After 24-h post-incubation, a marked enhancement of the DNA breaks was observed in cells treated with SN-07 and the cells contained double-strand DNA breaks also. RNA synthesis was not affected in the cells treated with 10 micrograms/ml MMC and slightly inhibited to 70% of control in those treated with 100 micrograms/ml ACNU, while DNA synthesis in both cells was significantly inhibited after 24-h post-incubation. By contrast, both RNA and DNA synthesis were completely inhibited in cells treated with 8.0 micrograms/ml SN-07.  相似文献   

13.
Non-irradiated and X-irradiated (80 Gy) human spermatozoa were processed for in situ DNA breakage detection-FISH (DBD-FISH) of the whole genome, following two alternative variations of the basic technique. In the first, cells were initially incubated in the alkaline unwinding solution for transformation of DNA breaks into single-stranded DNA (ssDNA) to be hybridized, followed by the lysing solutions for protein removal. In the second, incubation in the lysing solutions was carried out before the denaturation step. The first approach yielded two subpopulations. While most sperm nuclei were faintly labeled and had chromocenters, a small subpopulation was strongly and homogeneously labeled, due to extensive DNA breakage. X-ray exposure increased the surface and mean fluorescence intensity. Otherwise, when the denaturation step was performed after protein extraction, all sperm nuclei yielded strong and dispersed FISH signals. Protein removal allows access of the unwinding solution to the DNA, which has abundant alkali-labile sites, and thus gives rise to large areas of ssDNA that are labeled by FISH. X-ray exposure increased the dispersion of FISH signals but decreased their mean fluorescence intensity. A linear dose-response was generated using the second experimental variant, being 30 Gy the lowest dose for detecting induction of damage by X-rays in mature sperm chromatin. These results indicate that DBD-FISH is not only useful for in situ detection of DNA breakage but also for revealing structural features of chromatin.  相似文献   

14.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

15.
Radiation induced damage, i.e., the induction of DNA strand breaks, was studied on the level of single, unlabeled cells. DNA strand breaks were determined by direct partial alkaline unwinding in intact cell nuclei followed by staining with acridine orange, a development of a proposal first described by B. Rydberg (Int J Radiat Biol 46:521-527, 1984). The ratio of green fluorescence (double-stranded DNA) to red fluorescence (single-stranded DNA) in single cells was taken as a measure of DNA strand breaks. CHO-K1 and M3-1 cells irradiated with X-rays show a dose dependent induction of DNA strand breaks. Incubation at 37 degrees C after irradiation leads to repair of breaks. A repair halflife of about 10-11 min can be determined. Cell cycle specific differences in the induction of DNA strand breaks or repair behavior are not detectable at the resolution achieved so far. This new method offers two major advantages: the resolution of DNA damage and repair on the level of single cells and no need for labeling, thereby allowing for DNA damage and repair to be assessed in biopsy material from tumor patients.  相似文献   

16.
Human blood leukocytes were exposed to X rays to analyze the initial level of DNA breakage induced within different satellite DNA sequence areas and telomeres, using the DNA breakage detection-FISH procedure. The satellite DNA families analyzed comprised alphoid sequences, satellite 1, and 5-bp classical satellite DNA sequences from chromosome 1 (D1Z1 locus), from chromosome 9 (D9Z3 locus), and from the Y chromosome (DYZ1 locus). Since the control hybridization signal was quite different in each of the DNA targets, the relative increase in whole fluorescence intensity with respect to unirradiated controls was the parameter used for comparison. Irradiation of nucleoids obtained after protein removal demonstrated that the alkaline unwinding solution generates around half the amount of signal when breaks are present in the 5-bp classical DNA satellites as when the same numbers of breaks are present the genome overall, whereas the signal is slightly stronger when the breaks are within the alphoids or satellite 1 sequences. After correction for differences in sensitivity to the alkaline unwinding-renaturation, DNA housed in chromatin corresponding to 5-bp classical satellites proved to be more sensitive to breakage than the overall genome, whereas DNA in the chromatin corresponding to alphoids or satellite 1 showed a sensitivity similar to that of the whole genome. The minimum detectable dose was 0.1 Gy for the whole genome, 0.2 Gy for alphoids and satellite 1, and 0.4 Gy for the 5-bp classical satellites. Telomeric DNA sequences appeared to be maximally labeled in unirradiated cells. Thus telomeric ends behave like DNA breaks, constituting a source of background in alkaline unwinding assays.  相似文献   

17.
Summary The kinetics of DNA denaturation in alkaline solution (pH 12.2) was studied in CHO cells using the alkaline unwinding technique. After X-ray doses of 0, 3, 5 and 9 Gy, the kinetics of alkaline denaturation was found to be independent of the number of induced strand breaks confirming earlier studies on this subject. In addition, the denaturation kinetics measured in cells exposed to 9 Gy were found to be identical for different repair intervals. This result shows that for the three different classes of DNA strand breaks described previously (Dikomey and Franzke 1986a) strand separation in alkaline solution occurs at the same kinetics. As a consequence, the relationship between the numbers of strand breaks and the fraction of remaining double-stranded DNA is considered the same for the three different classes.  相似文献   

18.
A sensitive quantitation of DNA (0.2 to 10 ng) can be achieved using a 32P-labeled Alu probe to hybridize human DNA spotted onto nylon membrane. This allows the determination of radiation-induced single-strand breaks without the use of [3H]thymidine prelabeling of cells in culture. The sensitivity of this technique in HeLa cells is comparable to results obtained using the alkaline unwinding technique. The method is applicable to cells in both exponential and plateau phases of growth.  相似文献   

19.
Fluorimetric analysis of DNA unwinding, which allows measurement of DNA strand breaks in human leukocytes, has been optimized by reducing the amount of cells required for the test and by modifying the DNA alkali unwinding conditions. This permitted measurement of DNA strand-break induction in cells irradiated with low (0.5-7 Gy) or high doses (5-20 Gy) of gamma rays. Linear dose-response curves were obtained for both dose ranges. Presence of cysteamine during irradiation caused a decrease in the extent of DNA strand breaks. The kinetics of the DNA strand-break rejoining process appeared to be biphasic over the dose range of 2-20 Gy when plotted on a linear vs linear axis (percentage of damage as a function of time). Since the rate of disappearance of damaged DNA was similar for any given dose and for all postirradiation incubation times tested, we have expressed the extent of repair after a given postirradiation incubation as the ratio of the slopes of the regression lines obtained from incubated and nonincubated cells. Leukocytes from 25 healthy donors were analyzed to determine an average value for controls. No difference in the level of DNA strand breaks and the rate of repair of these breaks was observed between leukocytes from three ataxia telangiectasia patients and those from normal donors.  相似文献   

20.
The frequency of single-strand breaks in parental DNA and gaps in nascent DNA in various cells exposed to methyl methanesulfonate (MMS) or methylnitrosourea (MNU) was investigated by alkaline unwinding assay using two types of alkaline lysis conditions, 22°C lysis versus 0°C lysis. The DNA damage induced by MMS and MNU is considered to be characteristic of lesions produced in DNA by alkylating agents. The aim of our research project was to adjust this method to be able to detect the greatest number of DNA lesions induced by alkylating agents in parental DNA of different mammalian cells. In our experiments we used human cell lines EUE, GM637 and XP12, Chinese hamster V79 cells, and Syrian hamster embryo cells. The higher level of strand interruptions was detected under conditions of lysis of cells at 22°C. Probably the level of strand interruptions found after the lysis of cells at 22°C correlates with the increased number of disrupted alkali-labile sites of DNA. It is remarkable that the different lysis conditions did not influence the number of gaps detected in nascent DNA of alkylated cells. Comparing induction of breaks and gaps in radiolabelled strands of parental and daughter DNA under different lysis conditions, we succeeded in defining the optimum conditions for detection of alkali-labile sites of parental DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号